Suppr超能文献

单离子量子锁相放大器。

Single-ion quantum lock-in amplifier.

机构信息

Department of Physics of Complex Systems, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel.

出版信息

Nature. 2011 May 5;473(7345):61-5. doi: 10.1038/nature10010.

Abstract

Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor.

摘要

量子计量学利用量子信息科学的工具来提高测量的信噪比。挑战在于在降低对噪声的敏感性的同时提高灵敏度,这两个任务往往是相互冲突的。锁定测量是一种检测方案,旨在通过从噪声中分离信号来克服这一困难。在这里,我们报告了对经典锁定放大器的量子模拟的实现。所有的锁定操作——调制、检测和混合——都是通过对单个被俘 Sr(+)离子的电子自旋态应用非交换量子算符来执行的。我们通过三个数量级的相位相干性来显著提高其对外场的灵敏度,达到超过一秒。使用这种技术,我们以 0.42 Hz Hz(-1/2)(对应于磁场测量灵敏度为 15 pT Hz(-1/2))的灵敏度测量频率偏移,在 3720 秒的平均时间后获得小于 10 mHz(350 fT)的不确定性。这些灵敏度受到量子投影噪声的限制,并通过两个数量级的提高优于其他单自旋探针技术。我们报告的灵敏度足以测量宇称非守恒,以及从离子探测器以纳米分辨率检测距离子探测器一微米的单个电子自旋的磁场。作为第一个应用,我们进行了窄光四极跃迁的光移谱学研究。最后,我们强调量子锁定技术是通用的,并且可以潜在地提高任何量子传感器的灵敏度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验