Suppr超能文献

在硅纳米通道中 48 小时内的流动电流和壁溶解。

Streaming current and wall dissolution over 48 h in silica nanochannels.

机构信息

Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark.

出版信息

J Colloid Interface Sci. 2011 Aug 1;360(1):262-71. doi: 10.1016/j.jcis.2011.04.011. Epub 2011 Apr 16.

Abstract

We present theoretical and experimental studies of the streaming current induced by a pressure-driven flow in long, straight, electrolyte-filled nanochannels. The theoretical work builds on our recent one-dimensional model of electro-osmotic and capillary flow, which self-consistently treats both the ion concentration profiles, via the nonlinear Poisson-Boltzmann equation, and the chemical reactions in the bulk electrolyte and at the solid-liquid interface. We extend this model to two dimensions and validate it against experimental data for electro-osmosis and pressure-driven flows, using eight 1-μm-wide nanochannels of heights varying from 40 nm to 2000 nm. We furthermore vary the electrolyte composition using KCl and borate salts, and the wall coating using 3-cyanopropyldimethylchlorosilane. We find good agreement between prediction and experiment using literature values for all parameters of the model, i.e., chemical reaction constants and Stern-layer capacitances. Finally, by combining model predictions with measurements over 48 h of the streaming currents, we develop a method to estimate the dissolution rate of the silica walls, typically around 0.01 mg/m(2)/h, equal to 45 pm/h or 40 nm/yr, under controlled experimental conditions.

摘要

我们对压力驱动流在长直电解质填充纳米通道中产生的流动电流进行了理论和实验研究。理论工作基于我们最近的一维电渗流和毛细流动模型,该模型通过非线性泊松-玻尔兹曼方程自洽地处理离子浓度分布,以及在电解质本体和固液界面处的化学反应。我们将该模型扩展到二维,并使用 8 个 1μm 宽、高度从 40nm 到 2000nm 变化的纳米通道,通过实验数据对其进行了验证,这些实验数据涉及电渗流和压力驱动流动。我们还使用 KCl 和硼酸盐盐改变了电解质组成,并使用 3-氰丙基二甲基氯硅烷改变了壁涂层。我们发现,使用模型所有参数的文献值,即化学反应常数和斯特恩层电容,预测值与实验值吻合良好。最后,通过将模型预测值与超过 48 小时的流动电流测量值相结合,我们开发了一种方法来估计二氧化硅壁的溶解速率,在受控的实验条件下,通常约为 0.01mg/m(2)/h,相当于 45pm/h 或 40nm/yr。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验