Suppr超能文献

Nicotine and cotinine inhibit steroidogenesis in mouse Leydig cells.

作者信息

Patterson T R, Stringham J D, Meikle A W

机构信息

Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City 84132.

出版信息

Life Sci. 1990;46(4):265-72. doi: 10.1016/0024-3205(90)90032-m.

Abstract

Cigarette smoking alters plasma testosterone concentrations in men. The objectives of this study were to determine if nicotine and cotinine, two alkaloid products of cigarettes, affect luteinizing hormone(LH)-stimulated steroidogenesis in isolated adult mouse Leydig cells. Leydig cells from adult Swiss-Webster mice were isolated by linear density gradient and incubated (95% O2, 5% CO2) in minimum essential medium at 37 C for 3 hours with LH (10 ng) and with or without nicotine or cotinine (10(-5)-10(-7) M). Both nicotine and cotinine produced dose response inhibition (P less than 0.05) of LH-stimulated testosterone production (50-70%). The addition of 8-bromo-3',5'-cyclic monophosphate (cAMP, 500 uM) stimulated steroidogenesis comparable to LH in the absence of the alkaloids, but both nicotine and cotinine significantly (P less than 0.05) reduced testosterone production in response to cAMP, suggesting that the alkaloids inhibit testosterone production in response to LH distal to the formation of cAMP. In MEM without calcium, LH-stimulated testosterone synthesis was decreased, and neither nicotine nor cotinine significantly affected steroidogenesis. The addition of a calcium ionophore in MEM with normal calcium content enhanced (P less than 0.05) the inhibitory effects of nicotine and cotinine on LH-responsive steroidogenesis. A calcium channel blocking agent, verapamil, at 10uM significantly (P less than 0.05) reversed the inhibition of LH-stimulated testosterone production produced by both alkaloids when incubated in the medium with a normal calcium concentration. These results suggest that nicotine and cotinine either affect intracellular calcium content or block the effects of calcium on steroidogenesis in mouse Leydig cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验