Suppr超能文献

从深呼吸期间获得的 R-R 间期和收缩压信号的局部时域和频域指数预测药物诱导的压力感受性反射敏感性。

Prediction of pharmacologically induced baroreflex sensitivity from local time and frequency domain indices of R-R interval and systolic blood pressure signals obtained during deep breathing.

机构信息

Çukurova University, Electrical and Electronics Engineering Department, Adana, Turkey.

出版信息

Comput Biol Med. 2011 Jul;41(7):442-8. doi: 10.1016/j.compbiomed.2011.04.006. Epub 2011 May 8.

Abstract

Pharmacological measurement of baroreflex sensitivity (BRS) is widely accepted and used in clinical practice. Following the introduction of pharmacologically induced BRS (p-BRS), alternative assessment methods eliminating the use of drugs were in the center of interest of the cardiovascular research community. In this study we investigated whether p-BRS using phenylephrine injection can be predicted from non-pharmacological time and frequency domain indices computed from electrocardiogram (ECG) and blood pressure (BP) data acquired during deep breathing. In this scheme, ECG and BP data were recorded from 16 subjects in a two-phase experiment. In the first phase the subjects performed irregular deep breaths and in the second phase the subjects received phenylephrine injection. From the first phase of the experiment, a large pool of predictors describing the local characteristic of beat-to-beat interval tachogram (RR) and systolic blood pressure (SBP) were extracted in time and frequency domains. A subset of these indices was selected using twelve subjects with an exhaustive search fused with a leave one subject out cross validation procedure. The selected indices were used to predict the p-BRS on the remaining four test subjects. A multivariate regression was used in all prediction steps. The algorithm achieved best prediction accuracy with only two features extracted from the deep breathing data, one from the frequency and the other from the time domain. The normalized L2-norm error was computed as 22.9% and the correlation coefficient was 0.97 (p=0.03). These results suggest that the p-BRS can be estimated from non-pharmacological indices computed from ECG and invasive BP data related to deep breathing.

摘要

血压反射敏感性(BRS)的药理学测量已被广泛接受并应用于临床实践。在引入药物诱导的 BRS(p-BRS)之后,消除药物使用的替代评估方法成为心血管研究界关注的焦点。在这项研究中,我们研究了使用苯肾上腺素注射是否可以从心电图(ECG)和血压(BP)数据的非药理学时频域指数中预测 p-BRS,这些数据是在深度呼吸期间获得的。在该方案中,从 16 名受试者的两个阶段实验中记录 ECG 和 BP 数据。在第一阶段,受试者进行不规则的深呼吸,在第二阶段,受试者接受苯肾上腺素注射。从实验的第一阶段,从时间和频率域中提取了大量描述逐搏间隔心动图(RR)和收缩压(SBP)局部特征的预测因子。使用十二名受试者进行了全面搜索与留一受试者外交叉验证过程融合的 exhaustive 搜索,选择了这些指数中的一部分。使用选定的指数来预测其余四个测试对象的 p-BRS。在所有预测步骤中都使用了多元回归。该算法仅使用从深度呼吸数据中提取的两个特征即可实现最佳预测精度,一个来自频域,另一个来自时域。归一化 L2-范数误差计算为 22.9%,相关系数为 0.97(p=0.03)。这些结果表明,p-BRS 可以从与深度呼吸相关的心电图和有创 BP 数据计算出的非药理学指数中估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验