Suppr超能文献

在生存环境中直接和间接的影响。

Direct and indirect effects in a survival context.

机构信息

Department of Biostatistics, University of Copenhagen, Copenhagen K, Denmark.

出版信息

Epidemiology. 2011 Jul;22(4):575-81. doi: 10.1097/EDE.0b013e31821c680c.

Abstract

A cornerstone of epidemiologic research is to understand the causal pathways from an exposure to an outcome. Mediation analysis based on counterfactuals is an important tool when addressing such questions. However, none of the existing techniques for formal mediation analysis can be applied to survival data. This is a severe shortcoming, as many epidemiologic questions can be addressed only with censored survival data. A solution has been to use a number of Cox models (with and without the potential mediator), but this approach does not allow a causal interpretation and is not mathematically consistent. In this paper, we propose a simple measure of mediation in a survival setting. The measure is based on counterfactuals, and measures the natural direct and indirect effects. The method allows a causal interpretation of the mediated effect (in terms of additional cases per unit of time) and is mathematically consistent. The technique is illustrated by analyzing socioeconomic status, work environment, and long-term sickness absence. A detailed implementation guide is included in an online eAppendix (http://links.lww.com/EDE/A476).

摘要

流行病学研究的基石之一是理解从暴露到结局的因果途径。基于反事实的中介分析是解决此类问题的重要工具。然而,现有的正式中介分析技术都不能应用于生存数据。这是一个严重的缺点,因为许多流行病学问题只能用删失的生存数据来解决。一种解决方案是使用许多 Cox 模型(有和没有潜在的中介变量),但这种方法不允许进行因果解释,也不是数学上一致的。在本文中,我们提出了一种在生存环境中进行中介分析的简单方法。该方法基于反事实,衡量自然直接和间接效应。该方法允许对中介效应进行因果解释(以单位时间内的额外病例数表示),并且在数学上是一致的。该技术通过分析社会经济地位、工作环境和长期病假来说明。详细的实现指南包含在一个在线的电子附录中(http://links.lww.com/EDE/A476)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验