Department of Biostatistics, University of Copenhagen, Denmark.
Am J Epidemiol. 2012 Aug 1;176(3):190-5. doi: 10.1093/aje/kwr525. Epub 2012 Jul 10.
An important problem within both epidemiology and many social sciences is to break down the effect of a given treatment into different causal pathways and to quantify the importance of each pathway. Formal mediation analysis based on counterfactuals is a key tool when addressing this problem. During the last decade, the theoretical framework for mediation analysis has been greatly extended to enable the use of arbitrary statistical models for outcome and mediator. However, the researcher attempting to use these techniques in practice will often find implementation a daunting task, as it tends to require special statistical programming. In this paper, the authors introduce a simple procedure based on marginal structural models that directly parameterize the natural direct and indirect effects of interest. It tends to produce more parsimonious results than current techniques, greatly simplifies testing for the presence of a direct or an indirect effect, and has the advantage that it can be conducted in standard software. However, its simplicity comes at the price of relying on correct specification of models for the distribution of mediator (and exposure) and accepting some loss of precision compared with more complex methods. Web Appendixes 1 and 2, which are posted on the Journal's Web site (http://aje.oupjournals.org/), contain implementation examples in SAS software (SAS Institute, Inc., Cary, North Carolina) and R language (R Foundation for Statistical Computing, Vienna, Austria).
在流行病学和许多社会科学中,一个重要的问题是将给定治疗的效果分解为不同的因果途径,并量化每条途径的重要性。基于反事实的正式中介分析是解决这个问题的关键工具。在过去的十年中,中介分析的理论框架得到了极大的扩展,使得可以为结果和中介使用任意统计模型。然而,试图在实践中使用这些技术的研究人员通常会发现实施起来是一项艰巨的任务,因为它往往需要特殊的统计编程。在本文中,作者介绍了一种基于边际结构模型的简单方法,该方法可以直接对感兴趣的自然直接和间接效应进行参数化。与当前技术相比,它往往会产生更简洁的结果,大大简化了直接或间接效应存在性的检验,并且具有可以在标准软件中进行的优点。然而,它的简单性是以正确指定中介(和暴露)分布的模型为代价的,并接受与更复杂方法相比的一些精度损失。网络附录 1 和 2 发布在该杂志的网站(http://aje.oupjournals.org/)上,包含了在 SAS 软件(SAS Institute,Inc.,Cary,North Carolina)和 R 语言(R 基金会统计计算,维也纳,奥地利)中的实现示例。
Am J Epidemiol. 2012-7-10
Am J Epidemiol. 2013-11-20
Epidemiology. 2011-7
Am J Epidemiol. 2009-12-1
Am J Epidemiol. 2011-3-8
Psychol Methods. 2010-9
Int J Epidemiol. 2013-9-9
Psychol Methods. 2010-12
Epidemiology. 2011-11
Ann Appl Stat. 2021-6
BMC Musculoskelet Disord. 2025-5-14
BMC Med Res Methodol. 2025-2-22