文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于估计自然直接和间接效应的简单统一方法。

A simple unified approach for estimating natural direct and indirect effects.

机构信息

Department of Biostatistics, University of Copenhagen, Denmark.

出版信息

Am J Epidemiol. 2012 Aug 1;176(3):190-5. doi: 10.1093/aje/kwr525. Epub 2012 Jul 10.


DOI:10.1093/aje/kwr525
PMID:22781427
Abstract

An important problem within both epidemiology and many social sciences is to break down the effect of a given treatment into different causal pathways and to quantify the importance of each pathway. Formal mediation analysis based on counterfactuals is a key tool when addressing this problem. During the last decade, the theoretical framework for mediation analysis has been greatly extended to enable the use of arbitrary statistical models for outcome and mediator. However, the researcher attempting to use these techniques in practice will often find implementation a daunting task, as it tends to require special statistical programming. In this paper, the authors introduce a simple procedure based on marginal structural models that directly parameterize the natural direct and indirect effects of interest. It tends to produce more parsimonious results than current techniques, greatly simplifies testing for the presence of a direct or an indirect effect, and has the advantage that it can be conducted in standard software. However, its simplicity comes at the price of relying on correct specification of models for the distribution of mediator (and exposure) and accepting some loss of precision compared with more complex methods. Web Appendixes 1 and 2, which are posted on the Journal's Web site (http://aje.oupjournals.org/), contain implementation examples in SAS software (SAS Institute, Inc., Cary, North Carolina) and R language (R Foundation for Statistical Computing, Vienna, Austria).

摘要

在流行病学和许多社会科学中,一个重要的问题是将给定治疗的效果分解为不同的因果途径,并量化每条途径的重要性。基于反事实的正式中介分析是解决这个问题的关键工具。在过去的十年中,中介分析的理论框架得到了极大的扩展,使得可以为结果和中介使用任意统计模型。然而,试图在实践中使用这些技术的研究人员通常会发现实施起来是一项艰巨的任务,因为它往往需要特殊的统计编程。在本文中,作者介绍了一种基于边际结构模型的简单方法,该方法可以直接对感兴趣的自然直接和间接效应进行参数化。与当前技术相比,它往往会产生更简洁的结果,大大简化了直接或间接效应存在性的检验,并且具有可以在标准软件中进行的优点。然而,它的简单性是以正确指定中介(和暴露)分布的模型为代价的,并接受与更复杂方法相比的一些精度损失。网络附录 1 和 2 发布在该杂志的网站(http://aje.oupjournals.org/)上,包含了在 SAS 软件(SAS Institute,Inc.,Cary,North Carolina)和 R 语言(R 基金会统计计算,维也纳,奥地利)中的实现示例。

相似文献

[1]
A simple unified approach for estimating natural direct and indirect effects.

Am J Epidemiol. 2012-7-10

[2]
Assessing natural direct and indirect effects through multiple pathways.

Am J Epidemiol. 2013-11-20

[3]
Direct and indirect effects in a survival context.

Epidemiology. 2011-7

[4]
"Proportion explained": a causal interpretation for standard measures of indirect effect?

Am J Epidemiol. 2009-12-1

[5]
Doubly robust estimation of causal effects.

Am J Epidemiol. 2011-3-8

[6]
A general multilevel SEM framework for assessing multilevel mediation.

Psychol Methods. 2010-9

[7]
Mediation analysis in epidemiology: methods, interpretation and bias.

Int J Epidemiol. 2013-9-9

[8]
A general approach to causal mediation analysis.

Psychol Methods. 2010-12

[9]
Alternative assumptions for the identification of direct and indirect effects.

Epidemiology. 2011-11

[10]
Counterfactual graphical models for longitudinal mediation analysis with unobserved confounding.

Cogn Sci. 2013-7-30

引用本文的文献

[1]
Natural Effects in the Presence of an Intermediate Confounder: Evaluation of Pragmatic Estimation Strategies With an Emphasis on the Relationship Between Natural and Interventional Effects.

Stat Med. 2025-7

[2]
Arterial stiffness and atherosclerosis and incident cardiovascular events and all-cause mortality in individuals with manifest cardiovascular disease with and without type 2 diabetes.

Diabet Med. 2025-9

[3]
CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA.

Ann Appl Stat. 2021-6

[4]
Does the Path From Cigarette Smoking to Suicide Death Go Through the Hospital? A Causal Mediation Analysis in a National Canadian Sample.

Tob Use Insights. 2025-6-9

[5]
Associations of family affluence with cortisol production and telomere length in European children.

EBioMedicine. 2025-7

[6]
Type 2 diabetes, metabolic health, and the development of frozen shoulder: a cohort study in UK electronic health records.

BMC Musculoskelet Disord. 2025-5-14

[7]
Mediating role of the body mass index in the prospective association between a healthy diet and evolution of asthma symptoms in elderly women.

JAR Life. 2025-4-7

[8]
Deciphering the Interplay Among Inflammatory Bowel Disease, Gut Microbiota, and Inflammatory Biomarkers in the Risk of Colorectal Cancer.

Mediators Inflamm. 2025-3-8

[9]
A Multi-Omics Framework for Survival Mediation Analysis of High-Dimensional Proteogenomic Data.

ArXiv. 2025-3-11

[10]
Analysis of temporal survival trends: considerations and best practice.

BMC Med Res Methodol. 2025-2-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索