Sakharov Dmitri V, Lim Carmay
Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
J Comput Chem. 2009 Jan 30;30(2):191-202. doi: 10.1002/jcc.21048.
The question whether molecular dynamics (MD) simulations can yield reliable structural and dynamical properties of metalloproteins depend on the accuracy of the force field, i.e., the potential energy function (PEF) and associated parameters modeling the interactions of the metal ion of interest with water and protein ligands. Previously, we had developed a CTPOL PEF for protein simulations of Zn(2+) bound to Cys(-) and/or His(0) that includes charge transfer and local polarization effects as well as metal van der Waals parameters that reproduce the structural and thermodynamical properties of 22 dications. Here, we evaluate if the CTPOL PEF and the new metal parameters (referred to as the CTPOLa force field) can be applied to proteins containing polynuclear metal-binding sites and heavy toxic metal ions, using the CdZn(2)-Cys(9) beta-domain of rat liver metallothionein-2 and the Hg(2+)-bound 18-residue peptide from MerP as test systems. Using the CTPOLa force field, simulations of the beta-domain of rat liver metallothionein-2 totaling 19 ns could preserve the experimentally observed CdZn(2)-Cys(9) complex geometry and overall protein structure, whereas simulations neglecting charge transfer and local polarization effects could not. However, the CTPOLa force field cannot reproduce the experimentally observed linear bicoordination of Hg(2+) in the MerP peptide without adding an angular restraint to the CTPOL PEF to correct the angle distribution about Hg(2+). Thus, the force fields presented herein for the group IIB metal ions can be applied to simulation studies of proteins containing polynuclear metal-binding sites and heavy metal ions in aqueous solution. PEF neglecting charge transfer and local polarization effects in conjunction with vdW parameters adjusted to reproduce the structural and thermodynamical properties of only the metal ion in question could not yield an accurate representation of the metal-binding site and overall protein structure.
分子动力学(MD)模拟能否产生金属蛋白可靠的结构和动力学性质这一问题,取决于力场的准确性,即势能函数(PEF)以及对感兴趣的金属离子与水和蛋白质配体相互作用进行建模的相关参数。此前,我们已开发出一种CTPOL PEF,用于模拟与半胱氨酸(-)和/或组氨酸(0)结合的锌(2+)的蛋白质,该PEF包括电荷转移和局部极化效应以及重现22种二价阳离子结构和热力学性质的金属范德华参数。在此,我们以大鼠肝脏金属硫蛋白-2的CdZn(2)-Cys(9)β结构域和来自MerP的汞(2+)结合的18残基肽作为测试系统,评估CTPOL PEF和新的金属参数(称为CTPOLa力场)是否可应用于含有多核金属结合位点和重金属离子的蛋白质。使用CTPOLa力场,对大鼠肝脏金属硫蛋白-2β结构域进行的总计19纳秒的模拟能够保留实验观察到的CdZn(2)-Cys(9)复合物几何结构和整体蛋白质结构,而忽略电荷转移和局部极化效应的模拟则无法做到。然而,在不对CTPOL PEF添加角度约束以校正汞(2+)周围角度分布的情况下,CTPOLa力场无法重现实验观察到的MerP肽中汞(2+)的线性双配位。因此,本文提出的用于IIB族金属离子的力场可应用于水溶液中含有多核金属结合位点和重金属离子的蛋白质的模拟研究。忽略电荷转移和局部极化效应的PEF,结合仅为重现所讨论金属离子的结构和热力学性质而调整的范德华参数,无法准确呈现金属结合位点和整体蛋白质结构。