Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.
Nat Commun. 2011;2:300. doi: 10.1038/ncomms1302.
Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair.
在单细胞表达系统中进行膜片钳记录一直以来被用于研究离子通道的功能。然而,这种实验设置并不能评估组织水平的功能,如动作电位(AP)传导。在这里,我们引入了一种生物合成系统,该系统允许在单细胞中研究通道活性以及在多细胞网络中进行电传导。我们通过稳定表达仅三种膜通道,将非兴奋性的体细胞转化为自主的可兴奋和可传导细胞的来源。通过不同的药理学和起搏方案,可以揭示这些表达的通道在 AP 形态和传导中的特定作用。此外,我们证明生物合成的可兴奋细胞和组织可以修复原代 2 维和 3 维心脏细胞培养物中的大的传导缺陷。这种方法能够在可重复的组织水平设置中对离子通道功能进行新的研究,并可能刺激用于可兴奋组织修复的新型基于细胞的治疗方法的发展。