Gest Anneliese M M, Grenier Vincent, Miller Evan W
Department of Chemistry, University of California, Berkeley, California, USA.
Department of Molecular & Cell Biology, University of California, Berkeley, California, USA.
Bioelectricity. 2024 Mar 1;6(1):34-41. doi: 10.1089/bioe.2023.0027. Epub 2024 Mar 15.
Membrane potential (), the voltage across a cell membrane, is an important biophysical phenomenon, central to the physiology of cells, tissues, and organisms. Voltage-sensitive fluorescent indicators are a powerful method for interrogating membrane potential in living systems, but most indicators are best suited for detecting changes in membrane potential rather than measuring values of the membrane potential. One promising approach is to use fluorescence lifetime imaging microscopy (FLIM) in combination of chemically synthesized dyes to estimate a value of membrane potential. However, a drawback is that chemically synthesized dyes show poor specificity of staining.
To address this problem, we applied a chemical-genetic voltage imaging approach to FLIM to enable optical estimation of membrane potential values from genetically defined cells.
In this report, we detail the characterization and evaluation of two of these systems in mammalian cells. We further validate the use of a FLIM-based chemical genetic voltage indicator in mammalian neurons.
Finally, we discuss opportunities for future improvements to chemical-genetic FLIM-based voltage indicators.
膜电位(),即跨细胞膜的电压,是一种重要的生物物理现象,对于细胞、组织和生物体的生理学至关重要。电压敏感荧光指示剂是在活体系统中检测膜电位的一种强大方法,但大多数指示剂最适合检测膜电位的变化,而非测量膜电位的值。一种有前景的方法是结合化学合成染料使用荧光寿命成像显微镜(FLIM)来估计膜电位的值。然而,一个缺点是化学合成染料显示出较差的染色特异性。
为了解决这个问题,我们将化学遗传电压成像方法应用于FLIM,以实现从基因定义的细胞中光学估计膜电位值。
在本报告中,我们详细描述了在哺乳动物细胞中对其中两个系统的表征和评估。我们进一步验证了基于FLIM的化学遗传电压指示剂在哺乳动物神经元中的应用。
最后,我们讨论了未来改进基于化学遗传FLIM的电压指示剂的机会。