Suppr超能文献

含1,2 - 二氨基环己烷载体配体的铂配合物的化学与生物学(综述)

The chemistry and biology of platinum complexes with the 1,2-diaminocyclohexane carrier ligand (review).

作者信息

Chaney S

出版信息

Int J Oncol. 1995 Jun;6(6):1291-305. doi: 10.3892/ijo.6.6.1291.

Abstract

Dach-Pt compounds have been intensively studied because of their potential. efficacy against cisplatin-resistant tumors and their reduced nephrotoxicity and myelotoxicity compared to cisplatin and carboplatin. Because the dach carrier ligand can be H-3-labeled, the biotransformations of dach-Pt compounds have been studied in detail. Some of these biotransformation studies have provided new information about the likely cellular biotransformation pathways of Pt complexes in general. For example, biotransformation studies with 1,2-diaminocyclohexanedichloroplatinum(II) [Pt(dach)Cl-2] and 1,2-diaminocyclohexanemalonatoplatinum(II) [Pt(dach)(mal)] have shown that displacement of leaving ligands by HCO3- and PO4= are likely to represent important activation pathways for platinum(II) complexes in vivo and that the intracellular t(1/2) is much more rapid [15' for Pt(dach)Cl-2 and 30' for Pt(dach)(mal)] than predicted by previous in vitro experiments. Biotransformation studies with 1,2-diaminocyclohexanetetrachloroplatinum(IV) (ormaplatin) have suggested that Pt(II)-assisted Pt(IV) ligand exchange reactions can occur in vivo with platinum(IV) complexes. This is important for our understanding of platinum(IV) biotransformations because the specificity of Pt(II)-assisted Pt(IV) ligand exchange reactions is different than that for Pt(II) ligand exchange reactions. Finally, plasma biotransformation studies with ormaplatin in vivo have shown that ultrafilterable, active biotransformation products are cleared from the circulation much more rapidly than the ultrafilterable, inactive biotransformation products. This has lead to the suggestion that pharmacokinetic parameters based on the active biotransformation products are likely to be much more useful than pharmacokinetic parameters based on ultrafilterable platinum for predicting the efficacy and/or toxicity of platinum compound with chloro leaving ligands such as ormaplatin and cisplatin. Since dach-Pt compounds can overcome cisplatin resistance in some cancer cell lines but not in others, it is important to understand the mechanism(s) which determine(s) the carrier ligand specificity of resistance. A great deal has been learned about how dach-Pt compounds interact with DNA. The dach carier ligand constrains the N-Pt-N bond angle and can exist as 3 isomers with a total of 4 different non-planar conformations. These constraints do not appear to affect the rate or sequence specificity of Pt-DNA monoadduct formation, but do appear to alter the rate of monoadduct to diadduct conversions. The dach carrier ligand may also have significant effects on the conformation of DNA in the region of Pt-DNA adducts, although the biological consequences of these effects are not clear. Much less is known about the effects of the dach carrier ligand on the interactions of Pt compounds with proteins. Because Pt compounds primarily interact with nonadjacent amino acids on the surface of proteins, these interactions are not likely to be significantly affected by the conformation of dach-Pt compounds. However, the hydrophobicity of the dach carrier ligand may allow it to react with amino acid side chains in hydrophobic pockets that are inaccessible to cisplatin. At the cellular level, the dach carrier ligand appears to affect Pt accumulation in Pt resistant mouse L1210 cells, but has little effect on either Pt uptake or efflux in Pt-resistant human ovarian and colon carcinoma cell lines. While enhanced repair also appears to contribute to resistance in many eel lines, there is little or no difference in the repair of dach-Pt and cis-diammine-Pt adducts in any of the cell lines tested to date. Current data suggest that replicative bypass makes a significant contribution to platinum resistance and, in many cell lines, is the only process to predict the carrier ligand specificity of resistance. These data suggest that further elucidation of this process should add significantly to our understanding of platinum resistance and the role of platinum complexes with the dach carrier ligand in chemotherapy.

摘要

由于达卡铂(Dach-Pt)化合物具有潜在的抗顺铂耐药肿瘤的疗效,且与顺铂和卡铂相比,其肾毒性和骨髓毒性降低,因此受到了广泛研究。由于达卡铂载体配体可以用H-3标记,所以对达卡铂化合物的生物转化进行了详细研究。其中一些生物转化研究总体上为铂配合物可能的细胞生物转化途径提供了新信息。例如,对1,2-二氨基环己烷二氯铂(II)[Pt(dach)Cl₂]和1,2-二氨基环己烷丙二酸铂(II)[Pt(dach)(mal)]的生物转化研究表明,HCO₃⁻和PO₄³⁻取代离去配体可能是体内铂(II)配合物的重要活化途径,并且细胞内半衰期比之前的体外实验预测的要快得多[Pt(dach)Cl₂为15分钟,Pt(dach)(mal)为30分钟]。对1,2-二氨基环己烷四氯铂(IV)(奥马铂)的生物转化研究表明,铂(II)辅助的铂(IV)配体交换反应在体内可与铂(IV)配合物发生。这对于我们理解铂(IV)生物转化很重要,因为铂(II)辅助的铂(IV)配体交换反应的特异性与铂(II)配体交换反应不同。最后,奥马铂在体内的血浆生物转化研究表明,可超滤活性生物转化产物从循环中清除的速度比可超滤非活性生物转化产物快得多。这表明基于活性生物转化产物的药代动力学参数在预测含氯离去配体的铂化合物(如奥马铂和顺铂)的疗效和/或毒性方面可能比基于可超滤铂的药代动力学参数更有用。由于达卡铂化合物在某些癌细胞系中可以克服顺铂耐药性,但在其他癌细胞系中则不能,因此了解决定耐药性载体配体特异性的机制很重要。关于达卡铂化合物如何与DNA相互作用已经有了很多了解。达卡铂载体配体限制了N-Pt-N键角,可以以3种异构体形式存在,共有4种不同的非平面构象。这些限制似乎不影响Pt-DNA单加合物形成的速率或序列特异性,但似乎确实改变了单加合物向双加合物转化的速率。达卡铂载体配体也可能对Pt-DNA加合物区域的DNA构象有显著影响,尽管这些影响的生物学后果尚不清楚。关于达卡铂载体配体对铂化合物与蛋白质相互作用的影响了解较少。由于铂化合物主要与蛋白质表面不相邻的氨基酸相互作用,这些相互作用不太可能受到达卡铂化合物构象的显著影响。然而,达卡铂载体配体的疏水性可能使其与顺铂无法接触的疏水口袋中的氨基酸侧链发生反应。在细胞水平上,达卡铂载体配体似乎会影响铂在铂耐药小鼠L1210细胞中的积累,但对铂耐药的人卵巢癌和结肠癌细胞系中的铂摄取或流出几乎没有影响。虽然增强修复在许多细胞系中似乎也有助于耐药性,但在迄今为止测试的任何细胞系中,达卡铂和顺二氨基铂加合物的修复几乎没有差异。目前的数据表明,复制绕过对铂耐药性有显著贡献,并且在许多细胞系中,是预测耐药性载体配体特异性的唯一过程。这些数据表明,进一步阐明这一过程应能显著增进我们对铂耐药性以及含达卡铂载体配体的铂配合物在化疗中的作用的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验