Suppr超能文献

常规实验室检查可预测 COPD 急性加重期的院内死亡率。

Routine laboratory tests can predict in-hospital mortality in acute exacerbations of COPD.

机构信息

School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK.

出版信息

Lung. 2011 Jun;189(3):225-32. doi: 10.1007/s00408-011-9298-z. Epub 2011 May 10.

Abstract

Chronic obstructive pulmonary disease (COPD) has a rising global incidence and acute exacerbation of COPD (AECOPD) carries a high health-care economic burden. Classification and regression tree (CART) analysis is able to create decision trees to classify risk groups. We analysed routinely collected laboratory data to identify prognostic factors for inpatient mortality with AECOPD from our large district hospital. Data from 5,985 patients with 9,915 admissions for AECOPD over a 7-year period were examined. Randomly allocated training (n = 4,986) or validation (n = 4,929) data sets were developed and CART analysis was used to model the risk of all-cause death during admission. Inpatient mortality was 15.5%, mean age was 71.5 (±11.5) years, 56.2% were male, and mean length of stay was 9.2 (±12.2) days. Of 29 variables used, CART analysis identified three (serum albumin, urea, and arterial pCO(2)) to predict in-hospital mortality in five risk groups, with mortality ranging from 3.0 to 23.4%. C statistic indices were 0.734 and 0.701 on the training and validation sets, respectively, indicating good model performance. The highest-risk group (23.4% mortality) had serum urea >7.35 mmol/l, arterial pCO(2) >6.45 kPa, and normal serum albumin (>36.5 g/l). It is possible to develop clinically useful risk prediction models for mortality using laboratory data from the first 24 h of admission in AECOPD.

摘要

慢性阻塞性肺疾病(COPD)在全球的发病率不断上升,COPD 急性加重(AECOPD)给医疗保健带来了沉重的经济负担。分类回归树(CART)分析能够创建决策树来对风险组进行分类。我们分析了常规收集的实验室数据,以确定来自我们大型地区医院的 AECOPD 住院患者死亡的预后因素。在 7 年期间,共分析了 5985 例患者的 9915 例 AECOPD 住院患者的数据。随机分配训练(n=4986)或验证(n=4929)数据集,并使用 CART 分析对住院期间全因死亡的风险进行建模。住院死亡率为 15.5%,平均年龄为 71.5(±11.5)岁,56.2%为男性,平均住院时间为 9.2(±12.2)天。在使用的 29 个变量中,CART 分析确定了三个变量(血清白蛋白、尿素和动脉 pCO2)来预测五个风险组的住院死亡率,死亡率范围为 3.0%至 23.4%。在训练集和验证集上,C 统计指数分别为 0.734 和 0.701,表明模型性能良好。风险最高的组(死亡率为 23.4%)的血清尿素水平>7.35mmol/L,动脉 pCO2>6.45kPa,血清白蛋白正常(>36.5g/L)。使用 AECOPD 入院后 24 小时内的实验室数据,有可能开发出用于死亡率的临床有用的风险预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验