Suppr超能文献

使用典型相关分析对高清表面肌电信号进行去噪

Denoising of HD-sEMG signals using canonical correlation analysis.

作者信息

Al Harrach M, Boudaoud S, Hassan M, Ayachi F S, Gamet D, Grosset J F, Marin F

机构信息

CNRS UMR 7338, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France.

Rennes 1 University, 35000, Rennes, France.

出版信息

Med Biol Eng Comput. 2017 Mar;55(3):375-388. doi: 10.1007/s11517-016-1521-x. Epub 2016 May 25.

Abstract

High-density surface electromyography (HD-sEMG) is a recent technique that overcomes the limitations of monopolar and bipolar sEMG recordings and enables the collection of physiological and topographical informations concerning muscle activation. However, HD-sEMG channels are usually contaminated by noise in an heterogeneous manner. The sources of noise are mainly power line interference (PLI), white Gaussian noise (WGN) and motion artifacts (MA). The spectral components of these disruptive signals overlap with the sEMG spectrum which makes classical filtering techniques non effective, especially during low contraction level recordings. In this study, we propose to denoise HD-sEMG recordings at 20 % of the maximum voluntary contraction by using a second-order blind source separation technique, named canonical component analysis (CCA). For this purpose, a specific and automatic canonical component selection, using noise ratio thresholding, and a channel selection procedure for the selective version (sCCA) are proposed. Results obtained from the application of the proposed methods (CCA and sCCA) on realistic simulated data demonstrated the ability of the proposed approach to retrieve the original HD-sEMG signals, by suppressing the PLI and WGN components, with high accuracy (for five different simulated noise dispersions using the same anatomy). Afterward, the proposed algorithms are employed to denoise experimental HD-sEMG signals from five healthy subjects during biceps brachii contractions following an isometric protocol. Obtained results showed that PLI and WGN components could be successfully removed, which enhances considerably the SNR of the channels with low SNR and thereby increases the mean SNR value among the grid. Moreover, the MA component is often isolated on specific estimated sources but requires additional signal processing for a total removal. In addition, comparative study with independent component analysis, CCA-wavelet and CCA-empirical mode decomposition (EMD) proved a higher efficiency of the presented method over existing denoising techniques and demonstrated pointless a second filtering stage for denoising HD-sEMG recordings at this contraction level.

摘要

高密度表面肌电图(HD-sEMG)是一种最新技术,它克服了单极和双极sEMG记录的局限性,能够收集有关肌肉激活的生理和地形信息。然而,HD-sEMG通道通常会受到异质噪声的污染。噪声源主要是电力线干扰(PLI)、白高斯噪声(WGN)和运动伪影(MA)。这些干扰信号的频谱成分与sEMG频谱重叠,这使得传统滤波技术无效,尤其是在低收缩水平记录期间。在本研究中,我们建议使用一种名为规范成分分析(CCA)的二阶盲源分离技术,对最大自主收缩20%时的HD-sEMG记录进行去噪。为此,提出了一种使用噪声比阈值的特定自动规范成分选择方法,以及用于选择性版本(sCCA)的通道选择程序。将所提出的方法(CCA和sCCA)应用于真实模拟数据所获得的结果表明,该方法能够通过抑制PLI和WGN成分,高精度地恢复原始HD-sEMG信号(针对使用相同解剖结构的五种不同模拟噪声色散情况)。随后,所提出的算法被用于对等长收缩方案下五名健康受试者肱二头肌收缩期间的实验性HD-sEMG信号进行去噪。获得的结果表明,PLI和WGN成分能够被成功去除,这显著提高了低信噪比通道的信噪比,从而提高了网格中的平均信噪比。此外,MA成分通常在特定的估计源上被分离出来,但需要额外的信号处理才能完全去除。此外,与独立成分分析、CCA-小波和CCA-经验模态分解(EMD)的对比研究证明,本文提出的方法比现有去噪技术具有更高的效率,并且表明在该收缩水平下对HD-sEMG记录进行去噪时,无需进行第二阶段滤波。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验