Suppr超能文献

从妊娠电子宫记录中自动预测早产的相关特征选择。

Relevant Features Selection for Automatic Prediction of Preterm Deliveries from Pregnancy ElectroHysterograhic (EHG) records.

机构信息

Faculty of electronics and informatics, University of Sciences and Technology Houari Boumediene (USTHB), PB 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria.

出版信息

J Med Syst. 2017 Nov 11;41(12):204. doi: 10.1007/s10916-017-0847-8.

Abstract

In this study, we proposed an approach able to predict whether a pregnant woman with contractions would give birth earlier than expected (i.e., before the 37 week of gestation (WG)). It only processes non-invasive electrohysterographic (EHG) signals fully automatically without assistance of an expert or an additional medical system. We used term and preterm EHG signals of 30-minutes duration collected between the 27 and the 32 WG. Preterm deliveries (< 37W G) had occurred in average 4.00 ± 1.88 weeks since recording dates. Each recording contains three bipolar channels. Using the Huang-Hilbert transform (HHT), we obtained up to twelve intrinsic mode functions (IMFs) for each signal. We found that the most relevant IMFs for both term and preterm records were IMF3 and IMF6. From these two IMFs, we extracted 8 most relevant features targeting EHG signal specificities. We investigated features classifications using support vector machine (SVM) for the 3 single-channels and for all their possible combinations. High discrimination power between term and preterm EHG records was obtained with linear-SVM classifiers. For almost all the cases, mean areas under curves (AUC) exceeded 0.92. A two-channel combination (7 features) achieved the best mean results with A c c u r a c y = 95.70%, S e n s i t i v i t y = 98.40%, S p e c i f i c i t y = 93.00% and A U C = 0.95. Results of the three-channel combination (9 features) were A c c u r a c y = 92.30%, S e n s i t i v i t y = 93.00%, S p e c i f i c i t y = 91.60% and A U C = 0.96. The best single-channel (8 features) gave the mean values: A c c u r a c y = 90.40%, S e n s i t i v i t y = 93.60% and A U C = 0.94. Thus, the advantage of our approach is the high diagnostic performance at low computational cost.

摘要

在这项研究中,我们提出了一种能够预测是否有宫缩的孕妇会提前分娩(即,在妊娠 37 周之前)的方法。它仅在没有专家或额外医疗系统辅助的情况下,完全自动处理非侵入性的电子宫(EHG)信号。我们使用了 27 至 32 周采集的 30 分钟长的足月和早产 EHG 信号。早产(<37 周)平均在记录日期后 4.00 ± 1.88 周发生。每个记录包含三个双极通道。使用黄-希尔伯特变换(HHT),我们为每个信号获得了多达十二个固有模态函数(IMF)。我们发现,对于足月和早产记录,最相关的 IMF 是 IMF3 和 IMF6。从这两个 IMF 中,我们提取了 8 个针对 EHG 信号特异性的最相关特征。我们使用支持向量机(SVM)对 3 个单通道及其所有可能的组合进行了特征分类研究。使用线性-SVM 分类器可以在足月和早产 EHG 记录之间进行高度区分。在几乎所有情况下,曲线下面积(AUC)的平均值都超过 0.92。双通道组合(7 个特征)的平均准确率最高,为 95.70%,灵敏度为 98.40%,特异性为 93.00%,AUC 为 0.95。三通道组合(9 个特征)的结果为准确率为 92.30%,灵敏度为 93.00%,特异性为 91.60%,AUC 为 0.96。最佳单通道(8 个特征)的平均值为:准确率为 90.40%,灵敏度为 93.60%,AUC 为 0.94。因此,我们方法的优势在于以低计算成本实现高诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验