Computer Science Department, University of Missouri, Columbia, MO, USA.
Database (Oxford). 2011 May 10;2011:bar012. doi: 10.1093/database/bar012. Print 2011.
Model Organism Databases, including the various plant genome databases, collect and enable access to massive amounts of heterogeneous information, including sequence data, gene product information, images of mutant phenotypes, etc, as well as textual descriptions of many of these entities. While a variety of basic browsing and search capabilities are available to allow researchers to query and peruse the names and attributes of phenotypic data, next-generation search mechanisms that allow querying and ranking of text descriptions are much less common. In addition, the plant community needs an innovative way to leverage the existing links in these databases to search groups of text descriptions simultaneously. Furthermore, though much time and effort have been afforded to the development of plant-related ontologies, the knowledge embedded in these ontologies remains largely unused in available plant search mechanisms. Addressing these issues, we have developed a unique search engine for mutant phenotypes from MaizeGDB. This advanced search mechanism integrates various text description sources in MaizeGDB to aid a user in retrieving desired mutant phenotype information. Currently, descriptions of mutant phenotypes, loci and gene products are utilized collectively for each search, though expansion of the search mechanism to include other sources is straightforward. The retrieval engine, to our knowledge, is the first engine to exploit the content and structure of available domain ontologies, currently the Plant and Gene Ontologies, to expand and enrich retrieval results in major plant genomic databases. Database URL: http:www.PhenomicsWorld.org/QBTA.php.
模式生物数据库,包括各种植物基因组数据库,收集并提供大量异质信息的访问,包括序列数据、基因产物信息、突变表型图像等,以及对许多这些实体的文本描述。虽然有各种基本的浏览和搜索功能可供研究人员查询和浏览表型数据的名称和属性,但允许查询和排序文本描述的下一代搜索机制则要少见得多。此外,植物界需要一种创新的方法来利用这些数据库中的现有链接,同时搜索一组文本描述。此外,尽管在开发与植物相关的本体方面投入了大量时间和精力,但这些本体中嵌入的知识在现有的植物搜索机制中仍未得到充分利用。为了解决这些问题,我们开发了一个用于从 MaizeGDB 中搜索突变表型的独特搜索引擎。这个高级搜索机制整合了 MaizeGDB 中的各种文本描述源,以帮助用户检索所需的突变表型信息。目前,突变表型、基因座和基因产物的描述被集体用于每个搜索,尽管扩展搜索机制以包括其他来源是直截了当的。据我们所知,检索引擎是第一个利用现有领域本体(目前是植物和基因本体)的内容和结构来扩展和丰富主要植物基因组数据库中检索结果的引擎。数据库网址:http://www.PhenomicsWorld.org/QBTA.php。