Suppr超能文献

比例风险模型中的因果交互作用。

Causal interactions in the proportional hazards model.

机构信息

Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Epidemiology. 2011 Sep;22(5):713-7. doi: 10.1097/EDE.0b013e31821db503.

Abstract

The paper relates estimation and testing for additive interaction in proportional hazards models to causal interactions within the counterfactual framework. A definition of a causal interaction for time-to-event outcomes is given that generalizes existing definitions for dichotomous outcomes. Conditions are given concerning the relative excess risk due to interaction in proportional hazards models that imply the presence of a causal interaction at some point in time. Further results are given that allow for assessing the range of times and baseline survival probabilities for which parameter estimates indicate that a causal interaction is present, and for deriving lower bounds on the prevalence of such causal interactions. An interesting feature of the time-to-event setting is that causal interactions can disappear as time progresses, ie, whether a causal interaction is present depends on the follow-up time. The results are illustrated by hypothetical and data analysis examples.

摘要

本文将比例风险模型中的加性交互作用的估计和检验与反事实框架内的因果交互作用联系起来。给出了适用于事件时间结果的因果交互作用的定义,该定义扩展了现有用于二项结果的定义。给出了在比例风险模型中由于交互作用而导致的相对超额风险的条件,这些条件意味着在某个时间点存在因果交互作用。进一步的结果允许评估参数估计表明存在因果交互作用的时间范围和基线生存概率,并推导出此类因果交互作用的普遍性的下限。事件时间设置的一个有趣特征是,因果交互作用随着时间的推移而消失,即因果交互作用是否存在取决于随访时间。通过假设和数据分析示例来说明结果。

相似文献

1
Causal interactions in the proportional hazards model.
Epidemiology. 2011 Sep;22(5):713-7. doi: 10.1097/EDE.0b013e31821db503.
2
Causal proportional hazards models and time-constant exposure in randomized clinical trials.
Lifetime Data Anal. 2005 Dec;11(4):435-49. doi: 10.1007/s10985-005-5233-z.
3
Estimation of causal effect measures with the R-package stdReg.
Eur J Epidemiol. 2018 Sep;33(9):847-858. doi: 10.1007/s10654-018-0375-y. Epub 2018 Mar 14.
4
Causal inference methods to assess safety upper bounds in randomized trials with noncompliance.
Clin Trials. 2015 Jun;12(3):265-75. doi: 10.1177/1740774515572352. Epub 2015 Mar 1.
5
Mediation analysis with causally ordered mediators using Cox proportional hazards model.
Stat Med. 2019 Apr 30;38(9):1566-1581. doi: 10.1002/sim.8058. Epub 2018 Dec 18.
8
A mapping between interactions and interference: implications for vaccine trials.
Epidemiology. 2012 Mar;23(2):285-92. doi: 10.1097/EDE.0b013e318245c4ac.
9
Bounds on causal interactions for binary outcomes.
Biometrics. 2014 Sep;70(3):500-5. doi: 10.1111/biom.12166. Epub 2014 Mar 12.
10
Instrumental variable estimation of the causal hazard ratio.
Biometrics. 2023 Jun;79(2):539-550. doi: 10.1111/biom.13792. Epub 2022 Nov 28.

引用本文的文献

1
Assessing Additive Interactions between Protective Factors Using Relative Risk Reduction Due to Interaction.
Medicina (Kaunas). 2024 Jun 26;60(7):1053. doi: 10.3390/medicina60071053.
2
Serum neurofilament light chain as a prognostic marker of all-cause mortality in a national sample of US adults.
Eur J Epidemiol. 2024 Jul;39(7):795-809. doi: 10.1007/s10654-024-01131-7. Epub 2024 May 21.
3
Air pollution and serious bleeding events in high-risk older adults.
Environ Res. 2024 Jun 15;251(Pt 1):118628. doi: 10.1016/j.envres.2024.118628. Epub 2024 Mar 7.
4
Adverse pregnancy outcomes and long-term risk of chronic kidney disease in women: national cohort and co-sibling study.
Am J Obstet Gynecol. 2024 May;230(5):563.e1-563.e20. doi: 10.1016/j.ajog.2023.10.008. Epub 2023 Oct 11.
6
Association of inflammation-related exposures and ovarian cancer survival in a multi-site cohort study of Black women.
Br J Cancer. 2023 Oct;129(7):1119-1125. doi: 10.1038/s41416-023-02385-w. Epub 2023 Aug 3.
7
Pneumonitis in advanced non-small cell lung cancer: no interaction between immune checkpoint inhibition and radiation therapy.
J Thorac Dis. 2023 May 30;15(5):2458-2468. doi: 10.21037/jtd-22-1649. Epub 2023 Apr 12.
10
Additive harmful effects of acute kidney injury and acute heart failure on mortality in hospitalized patients.
Kidney Res Clin Pract. 2022 Mar;41(2):188-199. doi: 10.23876/j.krcp.21.111. Epub 2021 Dec 1.

本文引用的文献

1
Marginal structural models for sufficient cause interactions.
Am J Epidemiol. 2010 Feb 15;171(4):506-14. doi: 10.1093/aje/kwp396. Epub 2010 Jan 11.
2
Sufficient cause interactions and statistical interactions.
Epidemiology. 2009 Jan;20(1):6-13. doi: 10.1097/EDE.0b013e31818f69e7.
3
The identification of synergism in the sufficient-component-cause framework.
Epidemiology. 2007 May;18(3):329-39. doi: 10.1097/01.ede.0000260218.66432.88.
4
Test for additive interaction in proportional hazards models.
Ann Epidemiol. 2007 Mar;17(3):227-36. doi: 10.1016/j.annepidem.2006.10.009.
5
Marginal structural models and causal inference in epidemiology.
Epidemiology. 2000 Sep;11(5):550-60. doi: 10.1097/00001648-200009000-00011.
6
Causes.
Am J Epidemiol. 1976 Dec;104(6):587-92. doi: 10.1093/oxfordjournals.aje.a112335.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验