Suppr超能文献

评估保护因素之间的相加交互作用:基于交互作用的相对危险度降低。

Assessing Additive Interactions between Protective Factors Using Relative Risk Reduction Due to Interaction.

机构信息

Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy.

出版信息

Medicina (Kaunas). 2024 Jun 26;60(7):1053. doi: 10.3390/medicina60071053.

Abstract

: In the context of disease prevention, interaction on an additive scale is commonly assessed to determine synergistic effects between exposures. While the "Relative Excess Risk due to Interaction" represents the main measure of additive interaction between risk factors, in this study we aimed to extend this approach to assess additive interaction between factors known to prevent the event's occurrence, such as medical interventions and drugs. : We introduced and described the "Relative Risk Reduction due to Interaction" (RRRI) as a key measure to assess additive interactions between preventive factors, such as therapeutic interventions and drug combinations. For RRRI values closer to 1, the combination of exposures has a greater impact on reducing the event risk due to their interaction. As a purely illustrative example, we re-evaluated a previous investigation of the synergistic effect between statins and blood pressure-lowering drugs in preventing major adverse cardiovascular events (MACE). Moreover, simulation studies were used to empirically evaluate the performance of a robust Poisson regression model to estimate RRRI across different scenarios. : In our example, the drug combination revealed a positive additive interaction in further reducing MACE risk (RRRI > 0), even if not statistically significant. This result is more straightforward to interpret as compared to the original one based on the RERI. Additionally, our simulations highlighted the importance of large sample sizes for detecting significant interaction effects. : We recommend RRRI as the main measure to be considered when exploring additive interaction effects between protective exposures, such as the investigation of synergistic effects between drug combinations or preventive treatments.

摘要

在疾病预防的背景下,通常会评估交互作用的加性尺度,以确定暴露因素之间的协同效应。虽然“交互作用的相对超额风险”代表了危险因素之间加性交互作用的主要衡量标准,但在本研究中,我们旨在扩展这种方法,以评估已知可预防事件发生的因素(如医疗干预和药物)之间的加性交互作用。

我们引入并描述了“交互作用导致的相对风险降低”(RRRI)作为评估治疗干预和药物组合等预防因素之间加性交互作用的关键指标。对于更接近 1 的 RRRI 值,暴露因素的组合对降低事件风险的影响更大,这是由于它们的相互作用。作为一个纯粹的说明性示例,我们重新评估了之前关于他汀类药物和降压药物联合预防主要不良心血管事件(MACE)的协同作用的研究。此外,还进行了模拟研究,以实证评估稳健泊松回归模型在不同场景下估计 RRRI 的性能。

在我们的示例中,药物组合在进一步降低 MACE 风险方面表现出积极的加性交互作用(RRRI>0),尽管没有统计学意义。与基于 RERI 的原始结果相比,这一结果更容易解释。此外,我们的模拟强调了大样本量对于检测显著交互作用的重要性。

我们建议将 RRRI 作为主要指标,用于研究保护性暴露因素(如药物组合或预防治疗的协同作用)之间的加性交互作用效应。

相似文献

本文引用的文献

8
Interaction on an additive scale.相加尺度上的相互作用。
Nephron Clin Pract. 2011;119(2):c154-7. doi: 10.1159/000327596. Epub 2011 Jul 8.
9
Causal interactions in the proportional hazards model.比例风险模型中的因果交互作用。
Epidemiology. 2011 Sep;22(5):713-7. doi: 10.1097/EDE.0b013e31821db503.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验