BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA.
J Am Chem Soc. 2011 Jun 22;133(24):9387-94. doi: 10.1021/ja2008032. Epub 2011 May 25.
The conformational dynamics in the flaps of HIV-1 protease plays a crucial role in the mechanism of substrate binding. We develop a kinetic network model, constructed from detailed atomistic simulations, to determine the kinetic mechanisms of the conformational transitions in HIV-1 PR. To overcome the time scale limitation of conventional molecular dynamics (MD) simulations, our method combines replica exchange MD with transition path theory (TPT) to study the diversity and temperature dependence of the pathways connecting functionally important states of the protease. At low temperatures the large-scale flap opening is dominated by a small number of paths; at elevated temperatures the transition occurs through many structurally heterogeneous routes. The expanded conformation in the crystal structure 1TW7 is found to closely mimic a key intermediate in the flap-opening pathways at low temperature. We investigated the different transition mechanisms between the semi-open and closed forms. The calculated relaxation times reveal fast semi-open ↔ closed transitions, and infrequently the flaps fully open. The ligand binding rate predicted from this kinetic model increases by 38-fold from 285 to 309 K, which is in general agreement with experiments. To our knowledge, this is the first application of a network model constructed from atomistic simulations together with TPT to analyze conformational changes between different functional states of a natively folded protein.
HIV-1 蛋白酶瓣片的构象动力学在底物结合机制中起着至关重要的作用。我们开发了一个由详细原子模拟构建的动力学网络模型,以确定 HIV-1 PR 构象转变的动力学机制。为了克服传统分子动力学 (MD) 模拟的时间尺度限制,我们的方法结合了复制交换 MD 和跃迁路径理论 (TPT),以研究连接蛋白酶功能重要状态的途径的多样性和温度依赖性。在低温下,大规模瓣片打开主要由少数几条路径主导;在高温下,过渡通过许多结构上异构的途径发生。在晶体结构 1TW7 中发现的扩展构象,与低温下瓣片打开途径中的一个关键中间态非常相似。我们研究了半开和闭合形式之间的不同转变机制。计算得到的弛豫时间揭示了快速的半开→闭合转变,并且瓣片很少完全打开。从这个动力学模型预测的配体结合速率在 285 到 309 K 之间增加了 38 倍,这与实验结果基本一致。据我们所知,这是首次应用由原子模拟构建的网络模型与 TPT 相结合,来分析天然折叠蛋白不同功能状态之间的构象变化。