Institute for Medical Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
Bioinformatics. 2011 Jul 1;27(13):1882-3. doi: 10.1093/bioinformatics/btr296. Epub 2011 May 10.
Gene Ontology and other forms of gene-category analysis play a major role in the evaluation of high-throughput experiments in molecular biology. Single-category enrichment analysis procedures such as Fisher's exact test tend to flag large numbers of redundant categories as significant, which can complicate interpretation. We have recently developed an approach called model-based gene set analysis (MGSA), that substantially reduces the number of redundant categories returned by the gene-category analysis. In this work, we present the Bioconductor package mgsa, which makes the MGSA algorithm available to users of the R language. Our package provides a simple and flexible application programming interface for applying the approach.
The mgsa package has been made available as part of Bioconductor 2.8. It is released under the conditions of the Artistic license 2.0.
基因本体论和其他基因类别分析形式在分子生物学高通量实验的评估中起着重要作用。单类别富集分析程序,如 Fisher 精确检验,往往会将大量冗余类别标记为显著,这可能会使解释变得复杂。我们最近开发了一种称为基于模型的基因集分析 (MGSA) 的方法,该方法大大减少了基因类别分析返回的冗余类别的数量。在这项工作中,我们提出了 Bioconductor 包 mgsa,它为 R 语言的用户提供了 MGSA 算法。我们的包为应用该方法提供了一个简单灵活的应用程序编程接口。
mgsa 包已作为 Bioconductor 2.8 的一部分提供。它是根据艺术许可 2.0 发布的。