Department of Microbiology, University of Barcelona, Diagonal, 645, 08028 Barcelona, Spain.
Appl Microbiol Biotechnol. 2011 Aug;91(3):823-34. doi: 10.1007/s00253-011-3321-4. Epub 2011 May 12.
A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in the degradation of different hydrocarbons, and to assess their biodegradation potential for this complex heavy oil. After a 17-month enrichment in weathered fuel, the bacterial community, initially consisting mainly of Methylophaga species, underwent a major selective pressure in favor of obligate hydrocarbonoclastic microorganisms, such as Alcanivorax and Marinobacter spp. and other hydrocarbon-degrading taxa (Thalassospira and Alcaligenes), and showed strong biodegradation potential. This ranged from >99% for all low- and medium-molecular-weight alkanes (C(15)-C(27)) and polycyclic aromatic hydrocarbons (C(0)- to C(2)- naphthalene, anthracene, phenanthrene, dibenzothiophene, and carbazole), to 75-98% for higher molecular-weight alkanes (C(28)-C(40)) and to 55-80% for the C(3) derivatives of tricyclic and tetracyclic polycyclic aromatic hydrocarbons (PAHs) (e.g., C(3)-chrysenes), in 60 days. The numbers of total heterotrophs and of n-alkane-, aliphatic-, and PAH degraders, as well as the structures of these populations, were monitored throughout the biodegradation process. The salinity of the counting medium affects the counts of PAH degraders, while the carbon source (n-hexadecane vs. a mixture of aliphatic hydrocarbons) is a key factor when counting aliphatic degraders. These limitations notwithstanding, some bacterial genera associated with hydrocarbon degradation (mainly belonging to α- and γ-Proteobacteria, including the hydrocarbonoclastic Alcanivorax and Marinobacter) were identified. We conclude that Thalassospira and Roseobacter contribute to the degradation of aliphatic hydrocarbons, whereas Mesorhizobium and Muricauda participate in the degradation of PAHs.
进行了一项实验室实验,以从海洋溢油样本(威望燃料油)中鉴定出关键的碳氢化合物降解菌,确定它们在不同碳氢化合物降解中的作用,并评估它们对这种复杂重油的生物降解潜力。在经过 17 个月的风化燃料富集后,细菌群落最初主要由 Methylophaga 物种组成,经历了有利于专性烃降解微生物(如 Alcanivorax 和 Marinobacter spp. 和其他烃降解类群(Thalassospira 和 Alcaligenes)的主要选择性压力,并显示出很强的生物降解潜力。这从所有低分子量和中分子量烷烃(C(15)-C(27))和多环芳烃(C(0)-到 C(2)-萘、蒽、菲、二苯并噻吩和咔唑)的>99%,到更高分子量烷烃(C(28)-C(40))的 75-98%,以及三环和四环多环芳烃(PAHs)的 C(3)衍生物(例如,C(3)-chrysenes)的 55-80%,在 60 天内。在整个生物降解过程中,监测了总异养菌、烷烃、脂肪族和 PAH 降解菌的数量以及这些种群的结构。计数培养基的盐度会影响 PAH 降解菌的数量,而碳源(正十六烷与脂肪烃混合物)是计数脂肪族降解菌的关键因素。尽管存在这些限制,但仍鉴定出与碳氢化合物降解相关的一些细菌属(主要属于α-和γ-变形菌门,包括烃降解的 Alcanivorax 和 Marinobacter)。我们得出结论,Thalassospira 和 Roseobacter 有助于降解脂肪族烃,而 Mesorhizobium 和 Muricauda 参与降解 PAHs。