Suppr超能文献

最大熵生态位模型中的模型复杂度的重要性和模型选择标准的性能。

Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria.

机构信息

Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

Ecol Appl. 2011 Mar;21(2):335-42. doi: 10.1890/10-1171.1.

Abstract

Maxent, one of the most commonly used methods for inferring species distributions and environmental tolerances from occurrence data, allows users to fit models of arbitrary complexity. Model complexity is typically constrained via a process known as L1 regularization, but at present little guidance is available for setting the appropriate level of regularization, and the effects of inappropriately complex or simple models are largely unknown. In this study, we demonstrate the use of information criterion approaches to setting regularization in Maxent, and we compare models selected using information criteria to models selected using other criteria that are common in the literature. We evaluate model performance using occurrence data generated from a known "true" initial Maxent model, using several different metrics for model quality and transferability. We demonstrate that models that are inappropriately complex or inappropriately simple show reduced ability to infer habitat quality, reduced ability to infer the relative importance of variables in constraining species' distributions, and reduced transferability to other time periods. We also demonstrate that information criteria may offer significant advantages over the methods commonly used in the literature.

摘要

最大熵模型是一种常用的从物种出现数据中推断物种分布和环境容忍度的方法,它允许用户拟合任意复杂程度的模型。模型复杂度通常通过称为 L1 正则化的过程来约束,但目前对于设置适当的正则化水平的指导很少,并且不适当的复杂或简单模型的影响在很大程度上是未知的。在这项研究中,我们展示了如何使用信息准则方法来设置最大熵模型中的正则化,并将使用信息准则选择的模型与文献中常用的其他准则选择的模型进行了比较。我们使用从已知的“真实”初始最大熵模型生成的出现数据,使用多种不同的模型质量和可转移性指标来评估模型性能。我们证明了不适当复杂或不适当简单的模型在推断生境质量、推断变量在限制物种分布方面的相对重要性以及向其他时间段的可转移性方面的能力降低。我们还证明了信息准则可能比文献中常用的方法具有显著优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验