Goldshleger R, Shahak Y, Karlish S J
Biochemistry Department, Weizmann Institute of Science, Rehovoth, Israel.
J Membr Biol. 1990 Feb;113(2):139-54. doi: 10.1007/BF01872888.
This paper describes measurements of electrical potentials generated by renal Na/K-ATPase reconstituted into proteoliposomes, utilizing the anionic dye, oxonol VI. Calibration of absorption changes with imposed diffusion potentials allows estimation of absolute values of electrogenic potentials. ATP-dependent Nacyt/Kexc exchange in K-loaded vesicles generates large potentials, up to 250 mV. By comparing initial rates or steady-state potentials with ATP-dependent 22Na fluxes in different conditions, it is possible to infer whether coupling ratios are constant or variable. For concentrations of Nacyt (2-50 mM) and ATP (1-1000 microM) and pH's (6.5-8.5), the classical 3Nacyt/2Kexc coupling ratio is maintained. However, at low Nacyt concentrations (less than 0.8 mM), the coupling ratio is apparently less than 3Nacyt/2Kexc. ATP-dependent Nacyt/congenerexc exchange in vesicles loaded with Rb, Cs, Li and Na is electrogenic. In this mode congeners, including Naexc, act as Kexc surrogates in an electrogenic 3Nacyt/2congenerexc exchange. (ATP + Pi)-dependent Kcyt/Kexc exchange in K-loaded vesicles is electroneutral. ATP-dependent "uncoupled" Na flux into Na- and K-free vesicles is electroneutral at pH 6.5-7.0 but becomes progressively electrogenic as the pH is raised to 8.5. The 22Na flux shows no anion specificity. We propose that "uncoupled" Na flux is an electroneutral 3Nacyt/3Hexc exchange at pH 6.5-7.0 but at higher pH's the coupling ratio changes progressively, reaching 3Na/no ions at pH 8.5. Slow passive pump-mediated net K uptake into Na- and K-free vesicles is electroneutral, and may also involve Kcyt/Hexc exchange. We propose the general hypothesis that coupling ratios are fixed when cation transport sites are saturated, but at low concentrations of transported cations, e.g., Nacyt in Na/K exchange and Hexc in "uncoupled" Na flux, coupling ratios may change.
本文描述了利用阴离子染料氧化萘酚VI对重构于蛋白脂质体中的肾钠钾ATP酶产生的电势进行的测量。通过施加扩散电势来校准吸收变化,从而可以估算生电电势的绝对值。在钾负载的囊泡中,ATP依赖的钠胞内/钾胞外交换会产生高达250 mV的大电势。通过比较不同条件下初始速率或稳态电势与ATP依赖的22Na通量,可以推断耦合比是恒定的还是可变的。对于钠胞内浓度(2 - 50 mM)、ATP浓度(1 - 1000 microM)和pH值(6.5 - 8.5),经典的3钠胞内/2钾胞外耦合比得以维持。然而,在低钠胞内浓度(低于0.8 mM)时,耦合比明显小于3钠胞内/2钾胞外。在装载有铷、铯、锂和钠的囊泡中,ATP依赖的钠胞内/同系物胞外交换是生电的。在这种模式下,包括钠胞外在内的同系物在生电的3钠胞内/2同系物胞外交换中充当钾胞外的替代物。在钾负载的囊泡中,(ATP + 磷酸)依赖的钾胞内/钾胞外交换是电中性的。ATP依赖的“解偶联”钠流入无钠无钾的囊泡在pH 6.5 - 7.0时是电中性的,但随着pH升高到8.5,逐渐变为生电的。22Na通量没有阴离子特异性。我们提出,“解偶联”钠通量在pH 6.5 - 7.0时是电中性的3钠胞内/3氢胞外交换,但在较高pH值时,耦合比逐渐变化,在pH 8.5时达到3钠/无离子。缓慢的被动泵介导的净钾摄取进入无钠无钾的囊泡是电中性的,并且可能还涉及钾胞内/氢胞外交换。我们提出一个普遍的假设,即当阳离子转运位点饱和时,耦合比是固定的,但在被转运阳离子的低浓度下,例如钠钾交换中的钠胞内和“解偶联”钠通量中的氢胞外,耦合比可能会改变。