Suppr超能文献

脂质对人表皮生长因子受体的调节。

Regulation of human EGF receptor by lipids.

机构信息

Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.

出版信息

Proc Natl Acad Sci U S A. 2011 May 31;108(22):9044-8. doi: 10.1073/pnas.1105666108. Epub 2011 May 13.

Abstract

The human epidermal growth factor receptor (EGFR) is a key representative of tyrosine kinase receptors, ubiquitous actors in cell signaling, proliferation, differentiation, and migration. Although the receptor is well-studied, a central issue remains: How does the compositional diversity and functional diversity of the surrounding membrane modulate receptor function? Reconstituting human EGFR into proteoliposomes of well-defined and controlled lipid compositions represents a minimal synthetic approach to systematically address this question. We show that lipid composition has little effect on ligand-binding properties of the EGFR but rather exerts a profound regulatory effect on kinase domain activation. Here, the ganglioside GM3 but not other related lipids strongly inhibited the autophosphorylation of the EGFR kinase domain. This inhibitory action of GM3 was only seen in liposomes compositionally poised to phase separate into coexisting liquid domains. The inhibition by GM3 was released by either removing the neuraminic acid of the GM3 headgroup or by mutating a membrane proximal lysine of EGFR (K642G). Our results demonstrate that GM3 exhibits the potential to regulate the allosteric structural transition from inactive to a signaling EGFR dimer, by preventing the autophosphorylation of the intracellular kinase domain in response to ligand binding.

摘要

人表皮生长因子受体(EGFR)是酪氨酸激酶受体的一个重要代表,是细胞信号转导、增殖、分化和迁移中普遍存在的因素。尽管该受体已经得到了广泛的研究,但一个核心问题仍然存在:周围膜的组成多样性和功能多样性如何调节受体功能?将人 EGFR 重构到具有明确定义和控制的脂质组成的蛋白脂质体中,代表了一种最小的合成方法,可以系统地解决这个问题。我们表明,脂质组成对 EGFR 的配体结合特性几乎没有影响,但对激酶结构域的激活具有深远的调节作用。在这里,神经节苷脂 GM3 而不是其他相关脂质强烈抑制了 EGFR 激酶结构域的自动磷酸化。GM3 的这种抑制作用仅见于组成上能够相分离成共存的液相域的脂质体中。GM3 的抑制作用可以通过去除 GM3 头部的唾液酸或突变 EGFR 的一个膜近端赖氨酸(K642G)来释放。我们的结果表明,GM3 有可能通过阻止配体结合后细胞内激酶结构域的自动磷酸化,来调节从无活性到信号转导 EGFR 二聚体的变构结构转变,从而调节受体功能。

相似文献

1
Regulation of human EGF receptor by lipids.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9044-8. doi: 10.1073/pnas.1105666108. Epub 2011 May 13.
2
Effect of lipid mimetics of GM3 and lyso-GM3 dimer on EGF receptor tyrosine kinase and EGF-induced signal transduction.
Biochim Biophys Acta. 2008 Mar;1780(3):393-404. doi: 10.1016/j.bbagen.2007.10.018. Epub 2007 Nov 5.
3
4
Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides.
J Biol Chem. 2002 Mar 22;277(12):10108-13. doi: 10.1074/jbc.M111669200. Epub 2002 Jan 16.
5
Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor.
J Biol Chem. 2002 Dec 6;277(49):47028-34. doi: 10.1074/jbc.M208257200. Epub 2002 Sep 26.
6
FRET detects lateral interaction between transmembrane domain of EGF receptor and ganglioside GM3 in lipid bilayers.
Biochim Biophys Acta Biomembr. 2021 Aug 1;1863(8):183623. doi: 10.1016/j.bbamem.2021.183623. Epub 2021 Apr 30.
8
Ganglioside GM3 blocks the activation of epidermal growth factor receptor induced by integrin at specific tyrosine sites.
J Biol Chem. 2003 Dec 5;278(49):48770-8. doi: 10.1074/jbc.M308818200. Epub 2003 Sep 25.

引用本文的文献

1
Active regulation of the epidermal growth factor receptor by the membrane bilayer.
bioRxiv. 2025 Aug 18:2025.08.14.670284. doi: 10.1101/2025.08.14.670284.
2
Regulation of EMT-MET and chemoresistance by the Lc3Cer-synthase B3GNT5.
BMC Cancer. 2025 Aug 22;25(1):1356. doi: 10.1186/s12885-025-14717-5.
3
Plasma membrane remodeling in GM2 gangliosidoses drives synaptic dysfunction.
PLoS Biol. 2025 Jul 3;23(7):e3003265. doi: 10.1371/journal.pbio.3003265. eCollection 2025 Jul.
4
Targeting ABCD1-ACOX1-MET/IGF1R axis suppresses multiple myeloma.
Leukemia. 2025 Mar;39(3):720-733. doi: 10.1038/s41375-025-02522-9. Epub 2025 Jan 30.
5
Tumor-Expressed SPPL3 Supports Innate Antitumor Immune Responses.
Eur J Immunol. 2025 Feb;55(2):e202451129. doi: 10.1002/eji.202451129. Epub 2024 Dec 10.
6
A Patching and Coding Lipid Raft-Localized Universal Imaging Platform.
Chem Biomed Imaging. 2023 Nov 29;2(2):135-146. doi: 10.1021/cbmi.3c00109. eCollection 2024 Feb 26.
8
EGFR does not directly interact with cortical actin: A SRRF'n'TIRF study.
Biophys J. 2024 Nov 5;123(21):3736-3749. doi: 10.1016/j.bpj.2024.09.022. Epub 2024 Sep 26.
9
Terminal α1,2-fucosylation of glycosphingolipids by FUT1 is a key regulator in early cell-fate decisions.
EMBO Rep. 2024 Oct;25(10):4433-4464. doi: 10.1038/s44319-024-00243-1. Epub 2024 Sep 10.

本文引用的文献

1
Feedback regulation of EGFR signalling: decision making by early and delayed loops.
Nat Rev Mol Cell Biol. 2011 Feb;12(2):104-17. doi: 10.1038/nrm3048.
2
Lipidomics: new tools and applications.
Cell. 2010 Dec 10;143(6):888-95. doi: 10.1016/j.cell.2010.11.033.
3
Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis.
Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16524-9. doi: 10.1073/pnas.1002642107. Epub 2010 Sep 2.
4
Structural basis for negative cooperativity in growth factor binding to an EGF receptor.
Cell. 2010 Aug 20;142(4):568-79. doi: 10.1016/j.cell.2010.07.015.
5
Lipidomics: coming to grips with lipid diversity.
Nat Rev Mol Cell Biol. 2010 Aug;11(8):593-8. doi: 10.1038/nrm2934. Epub 2010 Jul 7.
6
Cell signaling by receptor tyrosine kinases.
Cell. 2010 Jun 25;141(7):1117-34. doi: 10.1016/j.cell.2010.06.011.
7
Spatial control of EGF receptor activation by reversible dimerization on living cells.
Nature. 2010 Apr 1;464(7289):783-7. doi: 10.1038/nature08827. Epub 2010 Mar 7.
8
Lateral organization of complex lipid mixtures from multiscale modeling.
J Chem Phys. 2010 Feb 14;132(6):065104. doi: 10.1063/1.3314729.
9
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
10
Cell signaling in space and time: where proteins come together and when they're apart.
Science. 2009 Nov 27;326(5957):1220-4. doi: 10.1126/science.1175668.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验