Suppr超能文献

Generation of finite wave trains in excitable media.

作者信息

Yochelis A, Knobloch E, Xie Y, Qu Z, Garfinkel A

机构信息

Department of Medicine (Cardiology), University of California - Los Angeles, CA 90095, USA.

出版信息

Europhys Lett. 2008 Sep 12;83(6):64005p1-64005p6. doi: 10.1209/0295-5075/83/64005.

Abstract

Spatiotemporal control of excitable media is of paramount importance in the development of new applications, ranging from biology to physics. To this end, we identify and describe a qualitative property of excitable media that enables us to generate a sequence of traveling pulses of any desired length, using a one-time initial stimulus. The wave trains are produced by a transient pacemaker generated by a one-time suitably tailored spatially localized finite amplitude stimulus, and belong to a family of fast pulse trains. A second family, of slow pulse trains, is also present. The latter are created through a clumping instability of a traveling wave state (in an excitable regime) and are inaccessible to single localized stimuli of the type we use. The results indicate that the presence of a large multiplicity of stable, accessible, multi-pulse states is a general property of simple models of excitable media.

摘要

相似文献

1
Generation of finite wave trains in excitable media.
Europhys Lett. 2008 Sep 12;83(6):64005p1-64005p6. doi: 10.1209/0295-5075/83/64005.
2
Origin of finite pulse trains: Homoclinic snaking in excitable media.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032924. doi: 10.1103/PhysRevE.91.032924. Epub 2015 Mar 25.
4
Oscillatory dispersion and coexisting stable pulse trains in an excitable medium.
Phys Rev Lett. 2003 Apr 11;90(14):148302. doi: 10.1103/PhysRevLett.90.148302. Epub 2003 Apr 9.
5
Using weak impulses to suppress traveling waves in excitable media.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):54-7. doi: 10.1103/physreve.60.54.
6
Pulse bifurcations and instabilities in an excitable medium: computations in finite ring domains.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Oct;64(4 Pt 2):046212. doi: 10.1103/PhysRevE.64.046212. Epub 2001 Sep 24.
7
A normal form for excitable media.
Chaos. 2006 Mar;16(1):013122. doi: 10.1063/1.2168393.
8
Origin of jumping oscillons in an excitable reaction-diffusion system.
Phys Rev E. 2021 Dec;104(6):L062201. doi: 10.1103/PhysRevE.104.L062201.
9
Predicting effective quenching of stable pulses in slow-fast excitable media.
Phys Rev E. 2024 Dec;110(6-1):064210. doi: 10.1103/PhysRevE.110.064210.
10
Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study.
Int Sch Res Notices. 2014 Nov 12;2014:459675. doi: 10.1155/2014/459675. eCollection 2014.

引用本文的文献

1
Designing reaction-cross-diffusion systems with Turing and wave instabilities.
J Math Biol. 2025 Sep 11;91(4):37. doi: 10.1007/s00285-025-02274-1.
2
From actin waves to mechanism and back: How theory aids biological understanding.
Elife. 2023 Jul 10;12:e87181. doi: 10.7554/eLife.87181.
3
conditions for Turing and wave instabilities in reaction-diffusion systems.
J Math Biol. 2023 Jan 28;86(3):39. doi: 10.1007/s00285-023-01870-3.
4
Kramers Rate Theory of Pacemaker Dynamics in Noisy Excitable Media.
Phys Rev Lett. 2022 Jul 22;129(4):048101. doi: 10.1103/PhysRevLett.129.048101.
5
Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves.
Cells. 2020 Jun 23;9(6):1533. doi: 10.3390/cells9061533.
7
Nonlinear and Stochastic Dynamics in the Heart.
Phys Rep. 2014 Oct 10;543(2):61-162. doi: 10.1016/j.physrep.2014.05.002.

本文引用的文献

1
A Framework for Exploring the Post-gelation Behavior of Ziff and Stell's Polymerization Models.
SIAM J Appl Math. 2015;75(3):1346-1368. doi: 10.1137/140983872. Epub 2015 Jun 30.
2
Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophys J. 1961 Jul;1(6):445-66. doi: 10.1016/s0006-3495(61)86902-6.
3
Excitable wave patterns in a spatially extended nonlinear optical cavity.
Opt Lett. 1999 May 1;24(9):578-80. doi: 10.1364/ol.24.000578.
4
Wave trains in an excitable FitzHugh-Nagumo model: bistable dispersion relation and formation of isolas.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 2):036202. doi: 10.1103/PhysRevE.75.036202. Epub 2007 Mar 2.
5
Jumping solitary waves in an autonomous reaction-diffusion system with subcritical wave instability.
Phys Chem Chem Phys. 2006 Oct 28;8(40):4647-51. doi: 10.1039/b609214d. Epub 2006 Sep 11.
6
Multiargument logical operations performed with excitable chemical medium.
J Chem Phys. 2006 Feb 28;124(8):084101. doi: 10.1063/1.2170076.
7
Numerical analysis of the Eckhaus instability in travelling-wave convection in binary mixtures.
Eur Phys J E Soft Matter. 2004 Nov;15(3):311-8. doi: 10.1140/epje/i2004-10071-7. Epub 2004 Nov 22.
8
Tracking waves and vortex nucleation in excitable systems with anomalous dispersion.
Phys Rev Lett. 2004 Jun 18;92(24):248301. doi: 10.1103/PhysRevLett.92.248301. Epub 2004 Jun 15.
9
Excitability in liquid crystal.
Chaos. 1994 Sep;4(3):485-489. doi: 10.1063/1.166026.
10
Oscillatory dispersion and coexisting stable pulse trains in an excitable medium.
Phys Rev Lett. 2003 Apr 11;90(14):148302. doi: 10.1103/PhysRevLett.90.148302. Epub 2003 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验