Villar-Sepúlveda Edgardo, Champneys Alan R, Krause Andrew L
School of Engineering Mathematics and Technology, University of Bristol, Ada Lovelace Building, Tankard's Cl, University Walk, Bristol, BS8 1TW, United Kingdom.
Mathematical Sciences Department, Durham University, Upper Mountjoy Campus, Stockton Rd, DH1 3LE, Durham, United Kingdom.
J Math Biol. 2025 Sep 11;91(4):37. doi: 10.1007/s00285-025-02274-1.
General conditions are established under which reaction-cross-diffusion systems can undergo spatiotemporal pattern-forming instabilities. Recent work has focused on designing systems theoretically and experimentally to exhibit patterns with specific features, but the case of non-diagonal diffusion matrices has yet to be analysed. Here, a framework is presented for the design of general n-component reaction-cross-diffusion systems that exhibit Turing and wave instabilities of a given wavelength. For a fixed set of reaction kinetics, it is shown how to choose diffusion matrices that produce each instability; conversely, for a given diffusion tensor, how to choose linearised kinetics. The theory is applied to several examples including a hyperbolic reaction-diffusion system, two different 3-component models, and a spatio-temporal version of the Ross-Macdonald model for the spread of malaria.
建立了反应交叉扩散系统能够经历时空模式形成不稳定性的一般条件。近期的工作集中在从理论和实验上设计系统以展现具有特定特征的模式,但非对角扩散矩阵的情况尚未得到分析。在此,提出了一个用于设计一般n组分反应交叉扩散系统的框架,该系统展现出给定波长的图灵不稳定性和波动不稳定性。对于一组固定的反应动力学,展示了如何选择产生每种不稳定性的扩散矩阵;反之,对于给定的扩散张量,如何选择线性化动力学。该理论应用于几个例子,包括一个双曲反应扩散系统、两个不同的3组分模型以及疟疾传播的罗斯 - 麦克唐纳模型的时空版本。