Suppr超能文献

蛋白质-化学复合物结构的组合揭示了已有药物的新靶点。

Combinations of protein-chemical complex structures reveal new targets for established drugs.

机构信息

Cell Networks, University of Heidelberg, Heidelberg, Germany.

出版信息

PLoS Comput Biol. 2011 May;7(5):e1002043. doi: 10.1371/journal.pcbi.1002043. Epub 2011 May 5.

Abstract

Biological networks are powerful tools for predicting undocumented relationships between molecules. The underlying principle is that existing interactions between molecules can be used to predict new interactions. Here we use this principle to suggest new protein-chemical interactions via the network derived from three-dimensional structures. For pairs of proteins sharing a common ligand, we use protein and chemical superimpositions combined with fast structural compatibility screens to predict whether additional compounds bound by one protein would bind the other. The method reproduces 84% of complexes in a benchmark, and we make many predictions that would not be possible using conventional modeling techniques. Within 19,578 novel predicted interactions are 7,793 involving 718 drugs, including filaminast, coumarin, alitretonin and erlotinib. The growth rate of confident predictions is twice that of experimental complexes, meaning that a complete structural drug-protein repertoire will be available at least ten years earlier than by X-ray and NMR techniques alone.

摘要

生物网络是预测分子间未记录关系的有力工具。其基本原理是,可以利用分子间现有的相互作用来预测新的相互作用。在此,我们通过源自三维结构的网络,利用这一原理来提出新的蛋白-化学相互作用。对于共享共同配体的蛋白对,我们使用蛋白和化学叠加,并结合快速结构兼容性筛选,来预测一个蛋白结合的其它化合物是否会与另一个蛋白结合。该方法再现了基准测试中 84%的复合物,并且我们做出了许多使用传统建模技术无法做出的预测。在 19578 个新预测的相互作用中,有 7793 个涉及 718 种药物,包括 filaminast、香豆素、alitretonin 和 erlotinib。置信预测的增长率是实验复合物的两倍,这意味着完整的结构药物-蛋白库将至少比 X 射线和 NMR 技术早十年可用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63ca/3088657/745e7b80588f/pcbi.1002043.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验