Cell Networks, University of Heidelberg, Heidelberg, Germany.
PLoS Comput Biol. 2011 May;7(5):e1002043. doi: 10.1371/journal.pcbi.1002043. Epub 2011 May 5.
Biological networks are powerful tools for predicting undocumented relationships between molecules. The underlying principle is that existing interactions between molecules can be used to predict new interactions. Here we use this principle to suggest new protein-chemical interactions via the network derived from three-dimensional structures. For pairs of proteins sharing a common ligand, we use protein and chemical superimpositions combined with fast structural compatibility screens to predict whether additional compounds bound by one protein would bind the other. The method reproduces 84% of complexes in a benchmark, and we make many predictions that would not be possible using conventional modeling techniques. Within 19,578 novel predicted interactions are 7,793 involving 718 drugs, including filaminast, coumarin, alitretonin and erlotinib. The growth rate of confident predictions is twice that of experimental complexes, meaning that a complete structural drug-protein repertoire will be available at least ten years earlier than by X-ray and NMR techniques alone.
生物网络是预测分子间未记录关系的有力工具。其基本原理是,可以利用分子间现有的相互作用来预测新的相互作用。在此,我们通过源自三维结构的网络,利用这一原理来提出新的蛋白-化学相互作用。对于共享共同配体的蛋白对,我们使用蛋白和化学叠加,并结合快速结构兼容性筛选,来预测一个蛋白结合的其它化合物是否会与另一个蛋白结合。该方法再现了基准测试中 84%的复合物,并且我们做出了许多使用传统建模技术无法做出的预测。在 19578 个新预测的相互作用中,有 7793 个涉及 718 种药物,包括 filaminast、香豆素、alitretonin 和 erlotinib。置信预测的增长率是实验复合物的两倍,这意味着完整的结构药物-蛋白库将至少比 X 射线和 NMR 技术早十年可用。