Suppr超能文献

相似文献

1
Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching.
Biomacromolecules. 2011 Jun 13;12(6):2375-81. doi: 10.1021/bm200463e. Epub 2011 May 24.
2
Reproducing natural spider silks' copolymer behavior in synthetic silk mimics.
Biomacromolecules. 2012 Dec 10;13(12):3938-48. doi: 10.1021/bm301110s. Epub 2012 Nov 8.
3
Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
Biomacromolecules. 2012 Feb 13;13(2):304-12. doi: 10.1021/bm201262n. Epub 2012 Jan 12.
4
Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.
Biopolymers. 2012 Jun;97(6):418-31. doi: 10.1002/bip.21724. Epub 2011 Oct 20.
5
Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
Science. 2002 Jan 18;295(5554):472-6. doi: 10.1126/science.1065780.
6
Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s).
Biomacromolecules. 2017 Apr 10;18(4):1365-1372. doi: 10.1021/acs.biomac.7b00090. Epub 2017 Mar 6.
7
Properties of Biomimetic Artificial Spider Silk Fibers Tuned by PostSpin Bath Incubation.
Molecules. 2020 Jul 16;25(14):3248. doi: 10.3390/molecules25143248.
8
Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers.
J Mech Behav Biomed Mater. 2014 Jan;29:225-34. doi: 10.1016/j.jmbbm.2013.09.002. Epub 2013 Sep 14.

引用本文的文献

3
Post-spin Stretch Improves Mechanical Properties, Reduces Necking, and Reverts Effects of Aging in Biomimetic Artificial Spider Silk Fibers.
ACS Appl Polym Mater. 2024 Nov 20;6(23):14342-14350. doi: 10.1021/acsapm.4c02192. eCollection 2024 Dec 13.
4
A recombinant chimeric spider pyriform-aciniform silk with highly tunable mechanical performance.
Mater Today Bio. 2024 Apr 27;26:101073. doi: 10.1016/j.mtbio.2024.101073. eCollection 2024 Jun.
5
Replicating shear-mediated self-assembly of spider silk through microfluidics.
Nat Commun. 2024 Jan 15;15(1):527. doi: 10.1038/s41467-024-44733-1.
6
Spidroins under the Influence of Alcohol: Effect of Ethanol on Secondary Structure and Molecular Level Solvation of Silk-Like Proteins.
Biomacromolecules. 2023 Dec 11;24(12):5638-5653. doi: 10.1021/acs.biomac.3c00637. Epub 2023 Nov 29.
7
An evolutionarily nascent architecture underlying the formation and emergence of biomolecular condensates.
Cell Rep. 2023 Aug 29;42(8):112955. doi: 10.1016/j.celrep.2023.112955. Epub 2023 Aug 15.
8
Spider Silk-Inspired Artificial Fibers.
Adv Sci (Weinh). 2022 Feb;9(5):e2103965. doi: 10.1002/advs.202103965. Epub 2021 Dec 19.
9
Engineering Silk Materials: From Natural Spinning to Artificial Processing.
Appl Phys Rev. 2020 Mar;7(1). doi: 10.1063/1.5091442. Epub 2020 Feb 26.

本文引用的文献

1
Molecular dynamics simulations of the folding of poly(alanine) peptides.
J Mol Model. 2011 Sep;17(9):2367-74. doi: 10.1007/s00894-011-0997-4. Epub 2011 Mar 1.
2
Enhancing the toughness of regenerated silk fibroin film through uniaxial extension.
Biomacromolecules. 2010 Nov 8;11(11):2890-5. doi: 10.1021/bm100643q. Epub 2010 Sep 29.
3
Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk.
Chem Commun (Camb). 2010 Sep 28;46(36):6714-6. doi: 10.1039/c0cc00829j. Epub 2010 Aug 23.
4
Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14059-63. doi: 10.1073/pnas.1003366107. Epub 2010 Jul 26.
5
Solid-state NMR comparison of various spiders' dragline silk fiber.
Biomacromolecules. 2010 Aug 9;11(8):2039-43. doi: 10.1021/bm100399x.
10
Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy.
J Am Chem Soc. 2008 Jul 30;130(30):9871-7. doi: 10.1021/ja8021208. Epub 2008 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验