Suppr超能文献

临床试验中亚组效应的经验贝叶斯估计。

Empirical Bayes estimates of subgroup effects in clinical trials.

作者信息

Davis C E, Leffingwell D P

机构信息

Department of Biostatistics, University of North Carolina, Chapel Hill 27514.

出版信息

Control Clin Trials. 1990 Feb;11(1):37-42. doi: 10.1016/0197-2456(90)90030-6.

Abstract

At the completion of a clinical trial it is often desirable to compare the treatments within subgroups of patients. The results of the subgroup analysis are usually reported for the subgroups within which sizable treatment differences are found. This practice can lead to an overestimate of the difference between treatments within the subgroups reported. One way of adjusting for this bias is to use empirical Bayes methods which shrink the extreme estimates toward the overall measure of treatment difference. Both point and interval estimates can be obtained. The computations are illustrated with an example using subgroup data from the Lipid Research Clinics Coronary Primary Prevention Trial.

摘要

在一项临床试验结束时,常常希望比较患者亚组内的治疗方法。亚组分析的结果通常是针对发现有显著治疗差异的亚组进行报告的。这种做法可能会导致对所报告亚组内治疗方法之间差异的高估。调整这种偏差的一种方法是使用经验贝叶斯方法,该方法会将极端估计值向治疗差异的总体度量值收缩。点估计和区间估计都可以得到。通过使用脂质研究临床中心冠心病一级预防试验的亚组数据举例说明了计算过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验