Suppr超能文献

富含精氨酸的细胞穿透肽可显著增强 AMO 介导的 ATM 异常剪接纠正,并可递送至脑和小脑。

Arginine-rich cell-penetrating peptide dramatically enhances AMO-mediated ATM aberrant splicing correction and enables delivery to brain and cerebellum.

机构信息

Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA.

出版信息

Hum Mol Genet. 2011 Aug 15;20(16):3151-60. doi: 10.1093/hmg/ddr217. Epub 2011 May 16.

Abstract

Antisense morpholino oligonucleotides (AMOs) can reprogram pre-mRNA splicing by complementary binding to a target site and regulating splice site selection, thereby offering a potential therapeutic tool for genetic disorders. However, the application of this technology into a clinical scenario has been limited by the low correction efficiency in vivo and inability of AMOs to efficiently cross the blood brain barrier and target brain cells when applied to neurogenetic disorders such as ataxia-telangiecatasia (A-T). We previously used AMOs to correct subtypes of ATM splicing mutations in A-T cells; AMOs restored up to 20% of the ATM protein and corrected the A-T cellular phenotype. In this study, we demonstrate that an arginine-rich cell-penetrating peptide, (RXRRBR)(2)XB, dramatically improved ATM splicing correction efficiency when conjugated with AMOs, and almost fully corrected aberrant splicing. The restored ATM protein was close to normal levels in cells with homozygous splicing mutations, and a gene dose effect was observed in cells with heterozygous mutations. A significant amount of the ATM protein was still detected 21 days after a single 5 µm treatment. Systemic administration of an fluorescein isothiocyanate-labeled (RXRRBR)(2)XB-AMO in mice showed efficient uptake in the brain. Fluorescence was evident in Purkinje cells after a single intravenous injection of 60 mg/kg. Furthermore, multiple injections significantly increased uptake in all areas of the brain, notably in cerebellum and Purkinje cells, and showed no apparent signs of toxicity. Taken together, these results highlight the therapeutic potential of (RXRRBR)(2)XB-AMOs in A-T and other neurogenetic disorders.

摘要

反义寡核苷酸(AMOs)可以通过与靶位点互补结合并调节剪接位点选择来重新编程前体 mRNA 的剪接,从而为遗传疾病提供了一种潜在的治疗工具。然而,由于体内校正效率低,以及当应用于神经遗传疾病(如共济失调毛细血管扩张症(A-T))时,AMOs 无法有效地穿过血脑屏障并靶向脑细胞,因此该技术在临床中的应用受到限制。我们之前曾使用 AMOs 纠正 A-T 细胞中 ATM 剪接突变的亚型;AMOs 可恢复高达 20%的 ATM 蛋白,并纠正 A-T 细胞表型。在这项研究中,我们证明了富含精氨酸的细胞穿透肽(RXRRBR)(2)XB 与 AMOs 缀合后可显著提高 ATM 剪接校正效率,并几乎完全纠正异常剪接。在具有纯合剪接突变的细胞中,恢复的 ATM 蛋白接近正常水平,并且在具有杂合突变的细胞中观察到基因剂量效应。在单次 5 µm 处理后 21 天,仍检测到大量 ATM 蛋白。在小鼠中进行的荧光素异硫氰酸酯标记的(RXRRBR)(2)XB-AMO 的系统给药显示在大脑中有高效的摄取。在单次静脉注射 60 mg/kg 后,在浦肯野细胞中可明显观察到荧光。此外,多次注射可显著增加大脑所有区域的摄取量,尤其是小脑和浦肯野细胞,并且没有明显的毒性迹象。综上所述,这些结果突出了(RXRRBR)(2)XB-AMO 在 A-T 和其他神经遗传疾病中的治疗潜力。

相似文献

引用本文的文献

3
Ataxia-telangiectasia clinical trial landscape and the obstacles to overcome.共济失调毛细血管扩张症临床试验全景及需克服的障碍。
Expert Opin Investig Drugs. 2023 Jul-Dec;32(8):693-704. doi: 10.1080/13543784.2023.2249399. Epub 2023 Aug 28.
9
RNA-based therapeutics for neurological diseases.基于 RNA 的神经疾病治疗方法。
RNA Biol. 2022;19(1):176-190. doi: 10.1080/15476286.2021.2021650. Epub 2021 Dec 31.

本文引用的文献

5
Cellular uptake of neutral phosphorodiamidate morpholino oligomers.中性磷酰二胺吗啉寡聚物的细胞摄取。
Curr Pharm Biotechnol. 2009 Sep;10(6):579-88. doi: 10.2174/138920109789069279. Epub 2009 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验