Università di Torino, Department of Medical Sciences & Azienda Ospedaliera Città della Salute e della Scienza, Turin, Italy.
Eur J Hum Genet. 2013 Jul;21(7):774-8. doi: 10.1038/ejhg.2012.266. Epub 2012 Dec 5.
Recent development of next-generation DNA sequencing (NGS) techniques is changing the approach to search for mutations in human genetic diseases. We applied NGS to study an A-T patient in which one of the two expected mutations was not found after DHPLC, cDNA sequencing and MLPA screening. The 160-kb ATM genomic region was divided into 31 partially overlapping fragments of 4-6 kb and amplified by long-range PCR in the patient and mother, who carried the same mutation by segregation. We identified six intronic variants that were shared by the two genomes and not reported in the dbSNP(132) database. Among these, c.1236-405C>T located in IVS11 was predicted to be pathogenic because it affected splicing. This mutation creates a cryptic novel donor (5') splice site (score 1.00) 405 bp upstream of the exon 12 acceptor (3') splice site. cDNA analysis showed the inclusion of a 212-bp non-coding 'pseudoexon' with a premature stop codon. We validated the functional effect of the splicing mutation using a minigene assay. Using antisense morpholino oligonucleotides, designed to mask the cryptic donor splice-site created by the c.1236-405C>T mutation, we abrogated the aberrant splicing product to a wild-type ATM transcript, and in vitro reverted the functional ATM kinase impairment of the patients' lymphoblasts. Resequencing is an effective strategy for identifying rare splicing mutations in patients for whom other mutation analyses have failed (DHPLC, MLPA, or cDNA sequencing). This is especially important because many of these patients will carry rare splicing variants that are amenable to antisense-based correction.
下一代 DNA 测序 (NGS) 技术的最新发展正在改变人们寻找人类遗传疾病突变的方法。我们应用 NGS 来研究一位 A-T 患者,在该患者中,经过 DHPLC、cDNA 测序和 MLPA 筛选后,未能发现两种预期突变中的一种。ATM 基因组的 160-kb 区域被分为 31 个部分重叠的片段,每个片段长 4-6kb,并通过患者和携带相同突变的母亲的长距离 PCR 进行扩增。我们鉴定了两个基因组共有的六个内含子变体,这些变体未在 dbSNP(132)数据库中报道。其中,c.1236-405C>T 位于 IVS11 中,被预测为致病性,因为它影响剪接。该突变在exon12 接受体(3')剪接位点上游 405bp 处创建了一个新的、隐蔽的供体位点(5')剪接位点(评分 1.00)。cDNA 分析显示,包含一个 212-bp 的非编码“假外显子”,并带有一个提前终止密码子。我们使用 minigene 测定法验证了剪接突变的功能效应。使用设计用于掩盖由 c.1236-405C>T 突变产生的隐蔽供体位点的反义形态发生素寡核苷酸,我们使异常剪接产物转变为野生型 ATM 转录本,并在体外逆转了患者淋巴母细胞的功能 ATM 激酶损伤。对于那些经过其他突变分析(DHPLC、MLPA 或 cDNA 测序)失败的患者,重新测序是一种有效的策略,可以识别罕见的剪接突变。这一点尤为重要,因为这些患者中的许多将携带可通过反义校正的罕见剪接变体。