National Institute of Infectious Diseases, Tokyo, Japan.
Antimicrob Agents Chemother. 2011 Jul;55(7):3538-45. doi: 10.1128/AAC.00325-11. Epub 2011 May 16.
Recently, the first Neisseria gonorrhoeae strain (H041) that is highly resistant to the extended-spectrum cephalosporin (ESC) ceftriaxone, the last remaining option for empirical first-line treatment, was isolated. We performed a detailed characterization of H041, phenotypically and genetically, to confirm the finding, examine its antimicrobial resistance (AMR), and elucidate the resistance mechanisms. H041 was examined using seven species-confirmatory tests, antibiograms (30 antimicrobials), porB sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), multilocus sequence typing (MLST), and sequencing of ESC resistance determinants (penA, mtrR, penB, ponA, and pilQ). Transformation, using appropriate recipient strains, was performed to confirm the ESC resistance determinants. H041 was assigned to serovar Bpyust, MLST sequence type (ST) ST7363, and the new NG-MAST ST4220. H041 proved highly resistant to ceftriaxone (2 to 4 μg/ml, which is 4- to 8-fold higher than any previously described isolate) and all other cephalosporins, as well as most other antimicrobials tested. A new penA mosaic allele caused the ceftriaxone resistance. In conclusion, N. gonorrhoeae has now shown its ability to also develop ceftriaxone resistance. Although the biological fitness of ceftriaxone resistance in N. gonorrhoeae remains unknown, N. gonorrhoeae may soon become a true superbug, causing untreatable gonorrhea. A reduction in the global gonorrhea burden by enhanced disease control activities, combined with wider strategies for general AMR control and enhanced understanding of the mechanisms of emergence and spread of AMR, which need to be monitored globally, and public health response plans for global (and national) perspectives are important. Ultimately, the development of new drugs for efficacious gonorrhea treatment is necessary.
最近,分离出了首例对扩展谱头孢菌素(ESC)头孢曲松高度耐药的淋病奈瑟菌(H041)菌株,这是经验性一线治疗的最后选择。我们对 H041 进行了详细的表型和遗传特征分析,以确认这一发现,检查其抗菌药物耐药性(AMR)并阐明耐药机制。使用七种种属确认试验、药敏谱(30 种抗生素)、porB 测序、淋病奈瑟菌多抗原序列分型(NG-MAST)、多位点序列分型(MLST)和 ESC 耐药决定因素(penA、mtrR、penB、ponA 和 pilQ)对 H041 进行了检测。通过适当的受体菌株进行转化,以确认 ESC 耐药决定因素。H041 被分配到血清型 Bpyust、MLST 序列型(ST)ST7363 和新的 NG-MAST ST4220。H041 对头孢曲松(2 至 4 μg/ml,比以前描述的任何分离株高 4 至 8 倍)和所有其他头孢菌素以及测试的大多数其他抗生素均显示高度耐药。一个新的 penA 嵌合等位基因导致头孢曲松耐药。总之,淋病奈瑟菌现在已经表现出产生头孢曲松耐药的能力。虽然淋病奈瑟菌头孢曲松耐药的生物学适应性尚不清楚,但淋病奈瑟菌可能很快成为真正的超级细菌,导致无法治愈的淋病。通过加强疾病控制活动来降低全球淋病负担,结合更广泛的一般抗菌药物耐药性控制策略和对 AMR 出现和传播机制的增强理解,这些都需要在全球范围内进行监测,以及制定针对全球(和国家)视角的公共卫生应对计划,这是很重要的。最终,需要开发新的药物来有效治疗淋病。