IEEE Trans Pattern Anal Mach Intell. 2011 Oct;33(10):2115-21. doi: 10.1109/TPAMI.2011.88. Epub 2011 May 12.
Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.
面部表情建模是面部表情识别和表情合成的核心,用于面部动画。在这项工作中,我们提出了一种基于流形的 3D 人脸重建方法,用于从单张人脸图像中估计 3D 人脸模型和相关的表情变形。利用我们提出的稳健加权特征图(RWF),可以在 3D 人脸模型之间获得密集的对应关系,并从大量的 3D 面部表情模型中构建一个非线性的 3D 表情流形。然后在这个流形中学习一个高斯混合模型来表示表情变形的分布。通过结合可变形中性人脸模型和低维表情流形的优点,在能量最小化框架中开发了一种新的算法,用于从单张人脸图像中重建 3D 人脸几何形状和面部变形。模拟和真实图像的实验结果验证了所提出算法的有效性和准确性。