Suppr超能文献

相似性与规则联合:单个神经网络中的相似性和基于规则的处理。

Similarity and rules United: similarity- and rule-based processing in a single neural network.

机构信息

Department of Experimental Psychology, Ghent University.

出版信息

Cogn Sci. 2009 Mar;33(2):243-59. doi: 10.1111/j.1551-6709.2009.01011.x.

Abstract

A central controversy in cognitive science concerns the roles of rules versus similarity. To gain some leverage on this problem, we propose that rule- versus similarity-based processes can be characterized as extremes in a multidimensional space that is composed of at least two dimensions: the number of features (Pothos, 2005) and the physical presence of features. The transition of similarity- to rule-based processing is conceptualized as a transition in this space. To illustrate this, we show how a neural network model uses input features (and in this sense produces similarity-based responses) when it has a low learning rate or in the early phases of training, but it switches to using self-generated, more abstract features (and in this sense produces rule-based responses) when it has a higher learning rate or is in the later phases of training. Relations with categorization and the psychology of learning are pointed out.

摘要

认知科学中的一个核心争议涉及规则与相似性的作用。为了在这个问题上取得一些进展,我们提出基于规则和基于相似性的过程可以被描述为由至少两个维度组成的多维空间中的极端:特征的数量(波索斯,2005)和特征的物理存在。从相似性到基于规则的处理的转变被概念化为这个空间中的转变。为了说明这一点,我们展示了神经网络模型如何在学习率低或训练早期阶段使用输入特征(因此产生基于相似性的响应),但在学习率较高或训练后期阶段时,它切换到使用自我生成的、更抽象的特征(因此产生基于规则的响应)。还指出了与分类和学习心理学的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验