Suppr超能文献

通过惩罚加权最小绝对偏差-套索方法进行异常值检测和稳健变量选择

Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method.

作者信息

Jiang Yunlu, Wang Yan, Zhang Jiantao, Xie Baojian, Liao Jibiao, Liao Wenhui

机构信息

Department of Statistics, College of Economics, Jinan University, Guangzhou, People's Republic of China.

College of Economics, Jinan University, Guangzhou, People's Republic of China.

出版信息

J Appl Stat. 2020 Feb 4;48(2):234-246. doi: 10.1080/02664763.2020.1722079. eCollection 2021.

Abstract

This paper studies the outlier detection and robust variable selection problem in the linear regression model. The penalized weighted least absolute deviation (PWLAD) regression estimation method and the adaptive least absolute shrinkage and selection operator (LASSO) are combined to simultaneously achieve outlier detection, and robust variable selection. An iterative algorithm is proposed to solve the proposed optimization problem. Monte Carlo studies are evaluated the finite-sample performance of the proposed methods. The results indicate that the finite sample performance of the proposed methods performs better than that of the existing methods when there are leverage points or outliers in the response variable or explanatory variables. Finally, we apply the proposed methodology to analyze two real datasets.

摘要

本文研究线性回归模型中的异常值检测和稳健变量选择问题。将惩罚加权最小绝对偏差(PWLAD)回归估计方法与自适应最小绝对收缩和选择算子(LASSO)相结合,以同时实现异常值检测和稳健变量选择。提出了一种迭代算法来解决所提出的优化问题。通过蒙特卡罗研究评估了所提方法的有限样本性能。结果表明,当响应变量或解释变量中存在杠杆点或异常值时,所提方法的有限样本性能优于现有方法。最后,我们应用所提方法对两个真实数据集进行分析。

相似文献

5
LASSO type penalized spline regression for binary data.LASSO 类型惩罚样条回归用于二项数据。
BMC Med Res Methodol. 2021 Apr 24;21(1):83. doi: 10.1186/s12874-021-01234-9.
9
Efficient robust doubly adaptive regularized regression with applications.高效稳健的双重自适应正则化回归及其应用。
Stat Methods Med Res. 2019 Jul;28(7):2210-2226. doi: 10.1177/0962280218757560. Epub 2018 Feb 16.

引用本文的文献

本文引用的文献

1
Efficient robust doubly adaptive regularized regression with applications.高效稳健的双重自适应正则化回归及其应用。
Stat Methods Med Res. 2019 Jul;28(7):2210-2226. doi: 10.1177/0962280218757560. Epub 2018 Feb 16.
2
ADAPTIVE ROBUST VARIABLE SELECTION.自适应鲁棒变量选择
Ann Stat. 2014 Feb 1;42(1):324-351. doi: 10.1214/13-AOS1191.
3
Robust Variable Selection with Exponential Squared Loss.基于指数平方损失的稳健变量选择
J Am Stat Assoc. 2013 Apr 1;108(502):632-643. doi: 10.1080/01621459.2013.766613.
4
Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension.用于分析超高维异质性的分位数回归
J Am Stat Assoc. 2012 Mar 1;107(497):214-222. doi: 10.1080/01621459.2012.656014. Epub 2012 Jun 11.
6
Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection.用于超高维变量选择的惩罚复合拟似然法
J R Stat Soc Series B Stat Methodol. 2011 Jun;73(3):325-349. doi: 10.1111/j.1467-9868.2010.00764.x.
8
Weighted Wilcoxon-type smoothly clipped absolute deviation method.加权威尔科克森型平滑截断绝对偏差法。
Biometrics. 2009 Jun;65(2):564-71. doi: 10.1111/j.1541-0420.2008.01099.x. Epub 2008 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验