Suppr超能文献

化学交换对组织模型中 T1ρ 弥散的贡献。

Contributions of chemical exchange to T1ρ dispersion in a tissue model.

机构信息

Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310, USA.

出版信息

Magn Reson Med. 2011 Dec;66(6):1563-71. doi: 10.1002/mrm.22947. Epub 2011 May 16.

Abstract

Variations in T(1ρ) with locking-field strength (T(1ρ) dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of comonomers, increasing stiffness, and in pH, modifying exchange rates. Magnetic resonance images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T(1ρ) at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T(1ρ) dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This article demonstrates a new method to assess the structural and chemical effects on T(1ρ) relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts.

摘要

T1ρ 值随锁定场强度(T1ρ 弥散)的变化可用于估计质子交换速率。我们开发了一种新方法,利用弥散曲线的二阶导数来测量交联聚丙烯酰胺凝胶模型系统中的交换。这些凝胶在共聚单体的相对组成、增加的刚度和 pH 值方面存在差异,从而改变了交换速率。磁共振图像是通过 Sepponen 等人描述的自旋锁定序列记录的。这些测量值符合单指数衰减函数,可得出在每个测量锁定场下 T1ρ 的值。然后,这些值符合 Chopra 等人的模型,用于估计交换速率。对于低刚度凝胶,随着 pH 值的增加,计算出的交换值增加了 4 倍,这与化学交换是 T1ρ 弥散的主要贡献者一致。有趣的是,计算出的化学交换速率也随刚度增加而增加,这可能是由于组成变化时侧链交换动力学发生了改变。本文展示了一种新方法,通过合适的模型评估 T1ρ 弛豫弥散的结构和化学效应。这些现象可以在成像中加以利用,以强调具有特定交换速率的核的存在,而不是化学位移。

相似文献

1
Contributions of chemical exchange to T1ρ dispersion in a tissue model.
Magn Reson Med. 2011 Dec;66(6):1563-71. doi: 10.1002/mrm.22947. Epub 2011 May 16.
2
Exchange-mediated contrast agents for spin-lock imaging.
Magn Reson Med. 2012 May;67(5):1427-33. doi: 10.1002/mrm.23130. Epub 2011 Sep 27.
3
New insights into rotating frame relaxation at high field.
NMR Biomed. 2016 Sep;29(9):1258-73. doi: 10.1002/nbm.3490. Epub 2016 Feb 11.
4
Contributions of chemical and diffusive exchange to T1ρ dispersion.
Magn Reson Med. 2013 May;69(5):1357-66. doi: 10.1002/mrm.24379. Epub 2012 Jul 12.
5
Chemical exchange in knee cartilage assessed by R1ρ (1/T1ρ) dispersion at 3T.
Magn Reson Imaging. 2015 Jan;33(1):38-42. doi: 10.1016/j.mri.2014.07.008. Epub 2014 Aug 2.
8
Exchange-mediated contrast in CEST and spin-lock imaging.
Magn Reson Imaging. 2014 Jan;32(1):28-40. doi: 10.1016/j.mri.2013.08.002. Epub 2013 Nov 13.
9
Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF).
Magn Reson Med. 2018 Dec;80(6):2449-2463. doi: 10.1002/mrm.27221. Epub 2018 May 13.

引用本文的文献

1
Optimized MR pulse sequence for high-resolution brain 3D-T1ρ mapping with weighted spin-lock acquisitions.
Magn Reson Med. 2025 Apr;93(4):1458-1470. doi: 10.1002/mrm.30412. Epub 2024 Dec 22.
3
SPICY: a method for single scan rotating frame relaxometry.
Phys Chem Chem Phys. 2023 May 10;25(18):13164-13169. doi: 10.1039/d2cp05988f.
4
Severity of polycystic kidney disease revealed by multiparametric MRI.
Magn Reson Med. 2023 Sep;90(3):1151-1165. doi: 10.1002/mrm.29679. Epub 2023 Apr 24.
5
Adiabatically prepared spin-lock could reduce the R dispersion.
Quant Imaging Med Surg. 2023 Feb 1;13(2):763-775. doi: 10.21037/qims-21-959. Epub 2022 Dec 9.
6
New methods for robust continuous wave T relaxation preparation.
NMR Biomed. 2023 Feb;36(2):e4834. doi: 10.1002/nbm.4834. Epub 2022 Oct 7.
8
Magnetization-prepared spoiled gradient-echo snapshot imaging for efficient measurement of R -R in knee cartilage.
Magn Reson Med. 2022 Feb;87(2):733-745. doi: 10.1002/mrm.29024. Epub 2021 Sep 30.

本文引用的文献

2
Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections.
J Magn Reson. 2007 May;186(1):75-85. doi: 10.1016/j.jmr.2007.01.015. Epub 2007 Jan 26.
4
Iopamidol: Exploring the potential use of a well-established x-ray contrast agent for MRI.
Magn Reson Med. 2005 Apr;53(4):830-4. doi: 10.1002/mrm.20441.
6
Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI.
Nat Med. 2003 Aug;9(8):1085-90. doi: 10.1038/nm907. Epub 2003 Jul 20.
7
Proton spin-lock ratio imaging for quantitation of glycosaminoglycans in articular cartilage.
J Magn Reson Imaging. 2003 Jan;17(1):114-21. doi: 10.1002/jmri.10228.
10
Complications of nonlinear echo time spacing for measurement of T (2).
NMR Biomed. 2000 Jan;13(1):1-7. doi: 10.1002/(sici)1099-1492(200002)13:1<1::aid-nbm603>3.0.co;2-e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验