Suppr超能文献

从静息态功能磁共振连接网络中提取自闭症生物标志物。

Extracting biomarkers of autism from MEG resting-state functional connectivity networks.

机构信息

Computer Science Department, University of Crete, Heraklion, Greece.

出版信息

Comput Biol Med. 2011 Dec;41(12):1166-77. doi: 10.1016/j.compbiomed.2011.04.004. Epub 2011 May 17.

Abstract

The present study is a preliminary attempt to use graph theory for deriving distinct features of resting-state functional networks in young adults with autism spectrum disorder (ASD). Networks modeled neuromagnetic signal interactions between sensors using three alternative interdependence measures: (a) a non-linear measure of generalized synchronization (robust interdependence measure [RIM]), (b) mutual information (MI), and (c) partial directed coherence (PDC). To summarize the information contained in each network model we employed well-established global graph measures (average strength, assortativity, clustering, and efficiency) as well as graph measures (average strength of edges) tailored to specific hypotheses concerning the spatial distribution of abnormalities in connectivity among individuals with ASD. Graph measures then served as features in leave-one-out classification analyses contrasting control and ASD participants. We found that combinations of regionally constrained graph measures, derived from RIM, performed best, discriminating between the two groups with 93.75% accuracy. Network visualization revealed that ASD participants displayed significantly reduced interdependence strength, both within bilateral frontal and temporal sensors, as well as between temporal sensors and the remaining recording sites, in agreement with previous studies of functional connectivity in this disorder.

摘要

本研究初步尝试使用图论方法来提取自闭症谱系障碍(ASD)年轻患者静息态功能网络的独特特征。网络模型使用三种替代的相互依赖度量标准来模拟传感器之间的神经磁信号相互作用:(a)广义同步的非线性度量(稳健相互依赖度量[RIM]),(b)互信息(MI)和(c)部分定向相干(PDC)。为了总结每个网络模型中包含的信息,我们采用了成熟的全局图度量标准(平均强度、聚类系数、聚集系数和效率)以及针对 ASD 患者之间连接异常的空间分布的特定假设量身定制的图度量标准(边缘的平均强度)。然后,图度量标准作为特征用于基于逐个排除的分类分析,将对照组和 ASD 组参与者进行对比。我们发现,源自 RIM 的区域约束图度量标准的组合表现最佳,可达到 93.75%的准确率来区分两组。网络可视化显示,与该疾病的功能连接的先前研究一致,ASD 患者双侧额叶和颞叶传感器之间以及颞叶传感器和其余记录部位之间的相互依赖强度显著降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验