Department of Orthopaedic Surgery, Stanford University Medical Center, 450 Broadway Street, M/C 6342, Redwood City, CA 94063, USA.
Biomaterials. 2011 Aug;32(24):5535-42. doi: 10.1016/j.biomaterials.2011.04.046. Epub 2011 May 18.
The inflammatory response to prosthetic implant-derived wear particles is the primary cause of bone loss and aseptic loosening of implants, but the mechanisms by which macrophages recognize and respond to particles remain unknown. Studies of innate immunity demonstrate that Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPS). All TLRs signal through myeloid differentiation factor 88 (MyD88), except TLR3 which signals through TIR domain containing adapter inducing interferon-beta (TRIF), and TLR4 which signals through both MyD88 and TRIF. We hypothesized that wear-debris particles may act as PAMPs/DAMPs and activate macrophages via TLRs. To test this hypothesis, we first demonstrated that inhibition of MyD88 decreases polymethylmethacrylate (PMMA) particle-induced production of TNF-α in RAW 264.7 macrophages. Next we compared particle-induced production of TNF-α among MyD88 knockout (MyD88(-/-)), TRIF knockout (TRIF(-/-)), and wild type (WT) murine macrophages. Relative to WT, disruption of MyD88 signaling diminished, and disruption of TRIF amplified the particle-induced production of TNF-α. Gene expression data indicated that this latter increase in TNF-α was due to a compensatory increase in expression of MyD88 associated components of the TLR pathway. Finally, using an in vivo model, MyD88(-/-) mice developed less particle-induced osteolysis than WT mice. These results indicate that the response to PMMA particles is partly dependent on MyD88, presumably as part of TLR signaling; MyD88 may represent a therapeutic target for prevention of wear debris-induced periprosthetic osteolysis.
对假体植入衍生的磨损颗粒的炎症反应是导致骨丢失和植入物无菌性松动的主要原因,但巨噬细胞识别和响应颗粒的机制尚不清楚。先天免疫研究表明,Toll 样受体 (TLR) 识别病原体相关分子模式 (PAMP) 和危险相关分子模式 (DAMP)。所有 TLR 都通过髓样分化因子 88 (MyD88) 信号传导,TLR3 通过 TIR 结构域包含衔接子诱导干扰素-β (TRIF) 信号传导,TLR4 通过 MyD88 和 TRIF 信号传导。我们假设磨损碎片颗粒可能作为 PAMP/DAMP,并通过 TLR 激活巨噬细胞。为了验证这一假设,我们首先证明 MyD88 的抑制可减少 PMMA 颗粒诱导的 RAW 264.7 巨噬细胞 TNF-α 的产生。接下来,我们比较了 MyD88 敲除 (MyD88(-/-))、TRIF 敲除 (TRIF(-/-)) 和野生型 (WT) 鼠巨噬细胞中颗粒诱导的 TNF-α 产生。与 WT 相比,MyD88 信号传导的破坏减少,而 TRIF 的破坏增加了颗粒诱导的 TNF-α 的产生。基因表达数据表明,后者 TNF-α 的增加是由于 TLR 途径中与 MyD88 相关的成分的表达代偿性增加。最后,在体内模型中,MyD88(-/-) 小鼠比 WT 小鼠发展出较少的颗粒诱导性骨溶解。这些结果表明,对 PMMA 颗粒的反应部分依赖于 MyD88,可能是 TLR 信号传导的一部分;MyD88 可能是预防磨损颗粒诱导的假体周围骨溶解的治疗靶点。