Mendoza Juan L, Schmidt André, Thomas Philip J
Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
Methods Mol Biol. 2011;741:321-7. doi: 10.1007/978-1-61779-117-8_21.
Inefficient folding of CFTR into a functional three-dimensional structure is the basic pathophysiologic mechanism leading to most cases of cystic fibrosis. Knowledge of the structure of CFTR and placement of these mutations into a structural context would provide information key for developing targeted therapeutic approaches for cystic fibrosis. As a large polytopic membrane protein containing disordered regions, intact CFTR has been refractory to efforts to solve a high-resolution structure using X-ray crystallography. The following chapters summarize current efforts to circumvent these obstacles by utilizing NMR, electron microscopy, and computational methodologies and by development of experimental models of the relevant domains of CFTR.
囊性纤维化跨膜传导调节因子(CFTR)折叠成功能性三维结构效率低下是导致大多数囊性纤维化病例的基本病理生理机制。了解CFTR的结构以及将这些突变置于结构背景中,将为开发针对囊性纤维化的靶向治疗方法提供关键信息。作为一种含有无序区域的大型多跨膜蛋白,完整的CFTR一直难以通过X射线晶体学解析其高分辨率结构。以下各章总结了目前通过利用核磁共振(NMR)、电子显微镜和计算方法以及开发CFTR相关结构域的实验模型来克服这些障碍的努力。