Suppr超能文献

从尿路致病性大肠杆菌 F11 株中鉴定出一种二分体铁摄取系统。

Characterization of a dipartite iron uptake system from uropathogenic Escherichia coli strain F11.

机构信息

Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle/Saale, Germany.

出版信息

J Biol Chem. 2011 Jul 15;286(28):25317-30. doi: 10.1074/jbc.M111.222745. Epub 2011 May 19.

Abstract

In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His(44), Met(90), His(97), and His(127), and CuB, a second degenerate octahedral geometry with the addition of Glu(46). The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein.

摘要

在尿路致病性大肠杆菌 F11 株中,通过计算机基因组分析揭示了二顺反子铁摄取操纵子 fetMP,该操纵子受 Fur 调节因子介导的铁调控控制。在缺乏已知铁摄取系统的突变株中,fetMP 的表达增强了在缺铁条件下的生长并增加了细胞内铁的积累。FetM 是铁/铅转运体超家族的成员,是 Fet 系统摄取铁所必需的。FetP 是一种周质蛋白,可增强 FetM 的铁摄取。重组 FetP 结合了 Cu(II)和铁类似物 Mn(II)在不同的位点上。FetP 二聚体的晶体结构揭示了每个 FetP 亚基中的一个铜位点,该位点采用两种构象:CuA 具有由 His(44)、Met(90)、His(97)和 His(127)组成的四面体几何形状,以及 CuB,第二个简并八面体几何形状,增加了 Glu(46)。每个位点的铜离子占据不同的位置,彼此隔开约 1.3 Å。在附近,提出了一个假定的额外 Cu(I)结合位点作为电子源,该位点可能与 CuA/CuB 置换一起,通过 FetM 还原 Fe(III)以进行转运。综上所述,这些数据表明 FetMP 是由一个假定的铁透性酶和一个铁摄取和潜在铁还原的周质蛋白组成的另一个铁摄取系统。

相似文献

1
Characterization of a dipartite iron uptake system from uropathogenic Escherichia coli strain F11.
J Biol Chem. 2011 Jul 15;286(28):25317-30. doi: 10.1074/jbc.M111.222745. Epub 2011 May 19.
2
A copper site is required for iron transport by the periplasmic proteins P19 and FetP.
Metallomics. 2020 Oct 21;12(10):1530-1541. doi: 10.1039/d0mt00130a.
3
Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF.
J Biol Chem. 2014 Jul 25;289(30):20492-501. doi: 10.1074/jbc.M114.577668. Epub 2014 Jun 10.
4
Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.
Biochemistry. 2008 Nov 4;47(44):11408-14. doi: 10.1021/bi801638m. Epub 2008 Oct 11.
7
A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli.
Mol Microbiol. 2006 Oct;62(1):120-31. doi: 10.1111/j.1365-2958.2006.05326.x.
8
Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system.
J Biol Chem. 2007 Dec 7;282(49):35695-702. doi: 10.1074/jbc.M703937200. Epub 2007 Sep 24.
9
Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli.
PLoS One. 2013;8(2):e56529. doi: 10.1371/journal.pone.0056529. Epub 2013 Feb 20.
10

引用本文的文献

1
Dissecting components of the gene cluster under iron limitation.
Microbiol Spectr. 2024 Jan 11;12(1):e0314823. doi: 10.1128/spectrum.03148-23. Epub 2023 Dec 14.
6
Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases.
Blood Adv. 2022 Mar 22;6(6):1692-1707. doi: 10.1182/bloodadvances.2021005609.
7
Investigating the roles of the conserved Cu-binding residues on Brucella FtrA in producing conformational stability and functionality.
J Inorg Biochem. 2020 Sep;210:111162. doi: 10.1016/j.jinorgbio.2020.111162. Epub 2020 Jun 23.
10
Synthetic Biogenesis of Bacterial Amyloid Nanomaterials with Tunable Inorganic-Organic Interfaces and Electrical Conductivity.
ACS Synth Biol. 2017 Feb 17;6(2):266-275. doi: 10.1021/acssynbio.6b00166. Epub 2016 Dec 6.

本文引用的文献

1
First structures of an active bacterial tyrosinase reveal copper plasticity.
J Mol Biol. 2011 Jan 7;405(1):227-37. doi: 10.1016/j.jmb.2010.10.048. Epub 2010 Oct 30.
2
Structure and function of P19, a high-affinity iron transporter of the human pathogen Campylobacter jejuni.
J Mol Biol. 2010 Aug 27;401(4):590-604. doi: 10.1016/j.jmb.2010.06.038. Epub 2010 Jun 30.
4
EfeO-cupredoxins: major new members of the cupredoxin superfamily with roles in bacterial iron transport.
Biometals. 2010 Feb;23(1):1-17. doi: 10.1007/s10534-009-9262-z. Epub 2009 Aug 23.
5
Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11719-24. doi: 10.1073/pnas.0903842106. Epub 2009 Jun 29.
6
In vitro unfolding of yeast multicopper oxidase Fet3p variants reveals unique role of each metal site.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19258-63. doi: 10.1073/pnas.0806431105. Epub 2008 Nov 25.
8
Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.
Nature. 2008 Oct 23;455(7216):1138-42. doi: 10.1038/nature07340.
9
A note on difficult structure alignment problems.
Bioinformatics. 2008 Feb 1;24(3):426-7. doi: 10.1093/bioinformatics/btm622. Epub 2008 Jan 2.
10
Inference of macromolecular assemblies from crystalline state.
J Mol Biol. 2007 Sep 21;372(3):774-97. doi: 10.1016/j.jmb.2007.05.022. Epub 2007 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验