Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg, Germany.
J Comput Aided Mol Des. 2011 May;25(5):477-89. doi: 10.1007/s10822-011-9433-1. Epub 2011 May 20.
Glycosaminoglycans (GAGs) are anionic polysaccharides, which participate in key processes in the extracellular matrix by interactions with protein targets. Due to their charged nature, accurate consideration of electrostatic and water-mediated interactions is indispensable for understanding GAGs binding properties. However, solvent is often overlooked in molecular recognition studies. Here we analyze the abundance of solvent in GAG-protein interfaces and investigate the challenges of adding explicit solvent in GAG-protein docking experiments. We observe PDB GAG-protein interfaces being significantly more hydrated than protein-protein interfaces. Furthermore, by applying molecular dynamics approaches we estimate that about half of GAG-protein interactions are water-mediated. With a dataset of eleven GAG-protein complexes we analyze how solvent inclusion affects Autodock 3, eHiTs, MOE and FlexX docking. We develop an approach to de novo place explicit solvent into the binding site prior to docking, which uses the GRID program to predict positions of waters and to locate possible areas of solvent displacement upon ligand binding. To investigate how solvent placement affects docking performance, we compare these results with those obtained by taking into account information about the solvent position in the crystal structure. In general, we observe that inclusion of solvent improves the results obtained with these methods. Our data show that Autodock 3 performs best, though it experiences difficulties to quantitatively reproduce experimental data on specificity of heparin/heparan sulfate disaccharides binding to IL-8. Our work highlights the current challenges of introducing solvent in protein-GAGs recognition studies, which is crucial for exploiting the full potential of these molecules for rational engineering.
糖胺聚糖(GAGs)是阴离子多糖,通过与蛋白质靶标相互作用参与细胞外基质中的关键过程。由于其带电性质,准确考虑静电和水介导的相互作用对于理解 GAGs 的结合特性是必不可少的。然而,在分子识别研究中,溶剂经常被忽视。在这里,我们分析了 GAG-蛋白质界面中溶剂的丰度,并研究了在 GAG-蛋白质对接实验中添加显式溶剂的挑战。我们观察到 PDB GAG-蛋白质界面比蛋白质-蛋白质界面明显更具水合性。此外,通过应用分子动力学方法,我们估计大约一半的 GAG-蛋白质相互作用是水介导的。使用包含十一个 GAG-蛋白质复合物的数据集,我们分析了溶剂包含如何影响 Autodock 3、eHiTs、MOE 和 FlexX 对接。我们开发了一种在对接之前将显式溶剂放入结合位点的方法,该方法使用 GRID 程序来预测水的位置,并定位配体结合时溶剂置换的可能区域。为了研究溶剂放置如何影响对接性能,我们将这些结果与考虑晶体结构中溶剂位置信息所获得的结果进行了比较。一般来说,我们观察到包含溶剂可以改善这些方法获得的结果。我们的数据表明 Autodock 3 表现最好,尽管它难以定量重现肝素/硫酸乙酰肝素二糖与 IL-8 特异性结合的实验数据。我们的工作强调了在蛋白质-GAGs 识别研究中引入溶剂的当前挑战,这对于充分利用这些分子进行合理工程至关重要。