Koch Katja, Afonin Sergii, Ieronimo Marco, Berditsch Marina, Ulrich Anne S
Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, Germany.
Top Curr Chem. 2012;306:89-118. doi: 10.1007/128_2011_162.
To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR, which makes use of macroscopically oriented lipid bilayers to study selectively isotope-labelled peptides. Native biomembranes, however, have a far more complex lipid composition and a significant non-lipidic content (protein and carbohydrate). Model membranes, therefore, are not really adequate to address questions concerning for example the selectivity of these membranolytic peptides against prokaryotic vs eukaryotic cells, their varying activities against different bacterial strains, or other related biological issues.Here, we discuss a solid-state (19)F-NMR approach that has been developed for structural studies of MAPs in lipid bilayers, and how this can be translated to measurements in native biomembranes. We review the essentials of the methodology and discuss key objectives in the practice of (19)F-labelling of peptides. Furthermore, the preparation of macroscopically oriented biomembranes on solid supports is discussed in the context of other membrane models. Two native biomembrane systems are presented as examples: human erythrocyte ghosts as representatives of eukaryotic cell membranes, and protoplasts from Micrococcus luteus as membranes from Gram-positive bacteria. Based on our latest experimental experience with the antimicrobial peptide gramicidin S, the benefits and some implicit drawbacks of using such supported native membranes in solid-state (19)F-NMR analysis are discussed.
为了解膜活性肽(MAPs)在体内的作用机制,获取其膜结合状态下的结构信息至关重要。大多数生物物理方法依赖于使用由合成磷脂制备的双层膜,即人工模型膜。一种特别成功的结构方法是固态核磁共振(NMR),它利用宏观取向的脂质双层来选择性地研究同位素标记的肽。然而,天然生物膜具有更为复杂的脂质组成以及大量的非脂质成分(蛋白质和碳水化合物)。因此,模型膜并不足以解决例如这些膜溶解肽对原核细胞与真核细胞的选择性、它们对不同细菌菌株的不同活性或其他相关生物学问题。在此,我们讨论一种已开发用于脂质双层中MAPs结构研究的固态¹⁹F-NMR方法,以及如何将其转化为在天然生物膜中的测量。我们回顾了该方法的要点,并讨论了肽的¹⁹F标记实践中的关键目标。此外,在其他膜模型的背景下讨论了在固体支持物上制备宏观取向生物膜的方法。给出了两个天然生物膜系统作为示例:作为真核细胞膜代表的人红细胞血影,以及作为革兰氏阳性细菌膜的藤黄微球菌原生质体。基于我们对抗菌肽短杆菌肽S的最新实验经验,讨论了在固态¹⁹F-NMR分析中使用此类支持的天然膜的优点和一些潜在缺点。