Physikalisch-Chemisches Institut, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
J Chem Phys. 2011 May 21;134(19):194302. doi: 10.1063/1.3590026.
The vibrational-rotational eigenenergy structure of the [H,N,C] molecular system is one of the key features needed for a quantum mechanical understanding of the HCN⇌HNC model reaction. The rotationless vibrational structure corresponding to the multidimensional double well potential energy surface is well established. The rotational structure of the bending vibrational states up to the isomerisation barrier is still unknown. In this work the structure of the rotational states for low and high vibrational angular momentum is described from the ground state up to the isomerisation barrier using hot gas molecular high resolution spectroscopy and rotationally assigned ab initio rovibronic states. For low vibrational angular momentum the rotational structure of the bending excitations splits in three regions. For J < 40 the structure corresponds to that of a typical linear molecule, for 40 < J < 60 has an approximate double degenerate structure and for J > 60 the splitting of the e and f components begins to decrease and the rotational constant increases. For states with high angular momentum, the rotational structure evolves into a limiting structure for v(2) > 7--the molecule is locked to the molecular axis. For states with v(2) > 11 the rotational structure already begins to accommodate to the lower rotational constants of the isomerisation states. The vibrational energy begins to accommodate to the levels above the barrier only at high vibrational excitations of v(2) > 22 just above the barrier whereas this work shows that the rotational structure is much more sensitive to the double well structure of the potential energy surface. The rotational structure already experiences the influence of the barrier at much lower energies than the vibrational one.
[H,N,C] 分子体系的振动-转动本征能量结构是量子力学理解 HCN ⇌ HNC 模型反应的关键特征之一。与多维双势阱势能表面相对应的无转动振动结构已经得到很好的确立。弯曲振动态的转动结构直到异构化势垒仍然未知。在这项工作中,使用热气体分子高分辨率光谱和从头算的 rovibronic 态对低振动角动量和高振动角动量的转动态结构进行了描述,从基态到异构化势垒。对于低振动角动量,弯曲激发的转动结构在三个区域分裂。对于 J < 40,结构对应于典型的线性分子,对于 40 < J < 60,具有近似的双重简并结构,对于 J > 60,e 和 f 分量的分裂开始减小,转动常数增加。对于具有高角动量的态,转动结构演变为 v(2) > 7 的极限结构-分子被锁定在分子轴上。对于 v(2) > 11 的态,转动结构已经开始适应异构化态的较低转动常数。振动能仅在高于势垒的高振动激发 v(2) > 22 时才开始适应势垒上方的能级,而这项工作表明,转动结构对势能表面的双势阱结构更为敏感。转动结构在比振动结构低得多的能量下就已经感受到势垒的影响。