Suppr超能文献

简单分子作为复杂系统。

Simple molecules as complex systems.

机构信息

1] Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary [2] MTA-ELTE Research Group on Complex Chemical Systems, H-1518 Budapest 112P.O. Box 32, Hungary.

1] MTA-ELTE Research Group on Complex Chemical Systems, H-1518 Budapest 112P.O. Box 32, Hungary [2] Department of Algebra and Number Theory, Institute of Mathematics, Eötvös Loránd University, H-1518 Budapest 112P.O. Box 120, Hungary.

出版信息

Sci Rep. 2014 Apr 11;4:4654. doi: 10.1038/srep04654.

Abstract

For individual molecules quantum mechanics (QM) offers a simple, natural and elegant way to build large-scale complex networks: quantized energy levels are the nodes, allowed transitions among the levels are the links, and transition intensities supply the weights. QM networks are intrinsic properties of molecules and they are characterized experimentally via spectroscopy; thus, realizations of QM networks are called spectroscopic networks (SN). As demonstrated for the rovibrational states of H2(16)O, the molecule governing the greenhouse effect on earth through hundreds of millions of its spectroscopic transitions (links), both the measured and first-principles computed one-photon absorption SNs containing experimentally accessible transitions appear to have heavy-tailed degree distributions. The proposed novel view of high-resolution spectroscopy and the observed degree distributions have important implications: appearance of a core of highly interconnected hubs among the nodes, a generally disassortative connection preference, considerable robustness and error tolerance, and an "ultra-small-world" property. The network-theoretical view of spectroscopy offers a data reduction facility via a minimum-weight spanning tree approach, which can assist high-resolution spectroscopists to improve the efficiency of the assignment of their measured spectra.

摘要

对于单个分子,量子力学(QM)提供了一种简单、自然和优雅的方法来构建大规模复杂网络:量子化能级是节点,允许的能级间跃迁是链接,跃迁强度提供权重。QM 网络是分子的固有特性,它们可以通过光谱学进行实验表征;因此,QM 网络的实现被称为光谱网络(SN)。正如通过 H2(16)O 的振转态所证明的那样,该分子通过其数以亿计的光谱跃迁(链接)来控制地球上的温室效应,无论是测量的还是第一性原理计算的单光子吸收 SN,其中包含可实验访问的跃迁,似乎都具有重尾度分布。所提出的高分辨率光谱学的新颖观点和观察到的度分布具有重要意义:在节点之间出现高度互联的核心枢纽,普遍的非聚类连接偏好,相当大的鲁棒性和容错性,以及“超小世界”特性。光谱学的网络理论观点提供了一种通过最小权重生成树方法的数据简化设施,这可以帮助高分辨率光谱学家提高其测量光谱的分配效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d8/3983599/09946fcdaa6d/srep04654-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验