Suppr超能文献

高斯随机矩阵有多少个特征值是正的?

How many eigenvalues of a Gaussian random matrix are positive?

作者信息

Majumdar Satya N, Nadal Céline, Scardicchio Antonello, Vivo Pierpaolo

机构信息

Laboratoire de Physique Théorique et Modèles Statistiques (UMR 8626 du CNRS), Université Paris-Sud, Bâtiment 100, 91405 Orsay Cedex, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041105. doi: 10.1103/PhysRevE.83.041105. Epub 2011 Apr 5.

Abstract

We study the probability distribution of the index N(+), i.e., the number of positive eigenvalues of an N×N Gaussian random matrix. We show analytically that, for large N and large N(+) with the fraction 0≤c=N(+)/N≤1 of positive eigenvalues fixed, the index distribution P(N(+)=cN,N)exp[-βN(2)Φ(c)] where β is the Dyson index characterizing the Gaussian ensemble. The associated large deviation rate function Φ(c) is computed explicitly for all 0≤c≤1. It is independent of β and displays a quadratic form modulated by a logarithmic singularity around c=1/2. As a consequence, the distribution of the index has a Gaussian form near the peak, but with a variance Δ(N) of index fluctuations growing as Δ(N)lnN/βπ(2) for large N. For β=2, this result is independently confirmed against an exact finite-N formula, yielding Δ(N)=lnN/2π(2)+C+O(N(-1)) for large N, where the constant C for even N has the nontrivial value C=(γ+1+3ln2)/2π(2)≃0.185 248… and γ=0.5772… is the Euler constant. We also determine for large N the probability that the interval [ζ(1),ζ(2)] is free of eigenvalues. Some of these results have been announced in a recent letter [Phys. Rev. Lett. 103, 220603 (2009)].

摘要

我们研究指标(N(+))的概率分布,即一个(N×N)高斯随机矩阵的正特征值的数量。我们通过分析表明,对于大的(N)以及大的(N(+)),且正特征值的比例(0\leq c = N(+)/N\leq1)固定时,指标分布(P(N(+)=cN,N)\sim\exp[-\beta N^2\varPhi(c)]),其中(\beta)是表征高斯系综的戴森指标。对于所有(0\leq c\leq1),明确计算出了相关的大偏差率函数(\varPhi(c))。它与(\beta)无关,并且在(c = 1/2)附近呈现出由对数奇点调制的二次形式。因此,指标分布在峰值附近具有高斯形式,但对于大的(N),指标涨落的方差(\Delta(N))随着(\Delta(N)\sim\ln N / (\beta\pi^2))增长。对于(\beta = 2),这个结果通过与一个精确的有限(N)公式独立验证,对于大的(N)得到(\Delta(N)=\ln N / (2\pi^2)+C + O(N^{-1})),其中偶数(N)时常数(C)具有非平凡值(C = (\gamma + 1 + 3\ln2) / (2\pi^2)\approx0.185248\cdots),且(\gamma = 0.5772\cdots)是欧拉常数。我们还确定了对于大的(N),区间([\zeta(1),\zeta(2)])没有特征值的概率。其中一些结果已在最近的一篇快报[《物理评论快报》103, 220603 (2009)]中公布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验