Suppr超能文献

随机矩阵β系综的数统计:零温下捕获费米子的应用

Number statistics for β-ensembles of random matrices: Applications to trapped fermions at zero temperature.

作者信息

Marino Ricardo, Majumdar Satya N, Schehr Grégory, Vivo Pierpaolo

机构信息

Department of Physics of Complex Systems, Weizmann Institute of Science, 76100 Rehovot, Israel.

LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.

出版信息

Phys Rev E. 2016 Sep;94(3-1):032115. doi: 10.1103/PhysRevE.94.032115. Epub 2016 Sep 13.

Abstract

Let P_{β}^{(V)}(N_{I}) be the probability that a N×Nβ-ensemble of random matrices with confining potential V(x) has N_{I} eigenvalues inside an interval I=[a,b] on the real line. We introduce a general formalism, based on the Coulomb gas technique and the resolvent method, to compute analytically P_{β}^{(V)}(N_{I}) for large N. We show that this probability scales for large N as P_{β}^{(V)}(N_{I})≈exp[-βN^{2}ψ^{(V)}(N_{I}/N)], where β is the Dyson index of the ensemble. The rate function ψ^{(V)}(k_{I}), independent of β, is computed in terms of single integrals that can be easily evaluated numerically. The general formalism is then applied to the classical β-Gaussian (I=[-L,L]), β-Wishart (I=[1,L]), and β-Cauchy (I=[-L,L]) ensembles. Expanding the rate function around its minimum, we find that generically the number variance var(N_{I}) exhibits a nonmonotonic behavior as a function of the size of the interval, with a maximum that can be precisely characterized. These analytical results, corroborated by numerical simulations, provide the full counting statistics of many systems where random matrix models apply. In particular, we present results for the full counting statistics of zero-temperature one-dimensional spinless fermions in a harmonic trap.

摘要

设(P_{β}^{(V)}(N_{I}))为具有限制势(V(x))的(N×N)β系综随机矩阵在实轴上区间(I = [a, b])内有(N_{I})个特征值的概率。我们引入一种基于库仑气体技术和预解式方法的通用形式,用于在大(N)时解析计算(P_{β}^{(V)}(N_{I}))。我们表明,对于大(N),该概率的标度形式为(P_{β}^{(V)}(N_{I})≈\exp[-βN^{2}ψ^{(V)}(N_{I}/N)]),其中(β)是系综的戴森指数。与(β)无关的速率函数(ψ^{(V)}(k_{I}))通过单积分计算得出,这些单积分很容易进行数值求值。然后将该通用形式应用于经典的β - 高斯((I = [-L, L]))、β - 威沙特((I = [1, L]))和β - 柯西((I = [-L, L]))系综。在速率函数的最小值附近展开,我们发现一般来说,数方差(var(N_{I}))作为区间大小的函数呈现非单调行为,其最大值可以精确表征。这些经数值模拟证实的解析结果提供了许多适用随机矩阵模型的系统的完整计数统计。特别是,我们给出了在谐波陷阱中零温度一维无自旋费米子的完整计数统计结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验