Pérez Castillo Isaac, Katzav Eytan, Vivo Pierpaolo
Departamento de Sistemas Complejos, Instituto de Física, UNAM, P.O. Box 20-364, 01000 México Distrito Federal, Mexico.
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):050103. doi: 10.1103/PhysRevE.90.050103. Epub 2014 Nov 26.
We study the statistics of the condition number κ=λ_{max}/λ_{min} (the ratio between largest and smallest squared singular values) of N×M Gaussian random matrices. Using a Coulomb fluid technique, we derive analytically and for large N the cumulative P(κ<x) and tail-cumulative P(κ>x) distributions of κ. We find that these distributions decay as P(κ<x)≈exp[-βN^{2}Φ_{-}(x)] and P(κ>x)≈exp[-βNΦ_{+}(x)], where β is the Dyson index of the ensemble. The left and right rate functions Φ_{±}(x) are independent of β and calculated exactly for any choice of the rectangularity parameter α=M/N-1>0. Interestingly, they show a weak nonanalytic behavior at their minimum 〈κ〉 (corresponding to the average condition number), a direct consequence of a phase transition in the associated Coulomb fluid problem. Matching the behavior of the rate functions around 〈κ〉, we determine exactly the scale of typical fluctuations ∼O(N^{-2/3}) and the tails of the limiting distribution of κ. The analytical results are in excellent agreement with numerical simulations.
我们研究了(N×M)高斯随机矩阵的条件数(\kappa = \lambda_{max} / \lambda_{min})(最大和最小平方奇异值之比)的统计特性。利用库仑流体技术,我们针对大(N)情况解析地推导了(\kappa)的累积分布(P(\kappa < x))和尾部累积分布(P(\kappa > x))。我们发现这些分布按(P(\kappa < x) \approx \exp[-\beta N^{2}\Phi_{-}(x)])和(P(\kappa > x) \approx \exp[-\beta N\Phi_{+}(x)])衰减,其中(\beta)是系综的戴森指数。左右速率函数(\Phi_{±}(x))与(\beta)无关,并且对于矩形度参数(\alpha = M / N - 1 > 0)的任何选择都能精确计算。有趣的是,它们在其最小值(\langle\kappa\rangle)(对应于平均条件数)处表现出微弱的非解析行为,这是相关库仑流体问题中相变的直接结果。通过匹配速率函数在(\langle\kappa\rangle)附近的行为,我们精确确定了典型涨落的尺度(\sim O(N^{-2/3}))以及(\kappa)极限分布的尾部。解析结果与数值模拟结果高度吻合。