Pérez Castillo Isaac
Departamento de Sistemas Complejos, Instituto de Física, UNAM, P.O. Box 20-364, 01000 México, D.F., México.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):040102. doi: 10.1103/PhysRevE.90.040102. Epub 2014 Oct 30.
We compute the full order statistics of a one-dimensional gas of spinless fermions (or, equivalently, hard bosons) in a harmonic trap at zero temperature, including its large deviation tails. The problem amounts to computing the probability distribution of the kth smallest eigenvalue λ(k) of a large dimensional Gaussian random matrix. We find that this probability behaves for large N as P[λ(k)=x]≈exp[-βN(2)ψ(k/N,x)], where β is the Dyson index of the ensemble. The rate function ψ(c,x), computed explicitly as a function of x in terms of the intensive label c=k/N, has a quadratic behavior modulated by a weak logarithmic singularity at its minimum. This is shown to be related to phase transitions in the associated Coulomb gas problem. The connection with statistics of extreme eigenvalues and order stastistics of random matrices is also discussed. We find that, as a function of c and keeping the value of x fixed, the rate function ψ(c,x) describes the statistics of the shifted index number, generalizing known results on its typical fluctuations; as a function of x and keeping the fraction c=k/N fixed, the rate function ψ(c,x) also describes the statistics of the kth eigenvalue in the bulk, generalizing as well the results on its typical fluctuations. Moreover, for k=1 (respectively, for k=N), the rate function captures both the fluctuations to the left and to the right of the typical value of λ(1) (respectively, of λ(N)).
我们计算了零温度下处于谐振子势阱中的一维无自旋费米子气体(或者等效地,硬玻色子气体)的全阶统计量,包括其大偏差尾部。该问题相当于计算一个大维高斯随机矩阵第(k)个最小特征值(\lambda(k))的概率分布。我们发现,对于大的(N),这个概率的行为为(P[\lambda(k)=x]\approx\exp[-\beta N(2)\psi(k/N,x)]),其中(\beta)是系综的戴森指数。速率函数(\psi(c,x)),根据强度标签(c = k/N)明确计算为(x)的函数,在其最小值处有一个由弱对数奇点调制的二次行为。这被证明与相关库仑气体问题中的相变有关。还讨论了与极端特征值统计和随机矩阵阶统计的联系。我们发现,作为(c)的函数且保持(x)值固定时,速率函数(\psi(c,x))描述了移位指数数的统计,推广了关于其典型涨落的已知结果;作为(x)的函数且保持分数(c = k/N)固定时,速率函数(\psi(c,x))也描述了主体中第(k)个特征值的统计,同样推广了关于其典型涨落的结果。此外,对于(k = 1)(分别地,对于(k = N)),速率函数捕捉了(\lambda(1))(分别地,(\lambda(N)))典型值左右两侧的涨落。