Suppr超能文献

基于多尺度增强和动态球囊跟踪(MSCAR-DBT)方法的冠状动脉 CT 血管造影中的自动冠状动脉树提取。

Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method.

机构信息

Department of Radiology, University of Michigan, Ann Arbor 48109, USA.

出版信息

Comput Med Imaging Graph. 2012 Jan;36(1):1-10. doi: 10.1016/j.compmedimag.2011.04.001. Epub 2011 May 20.

Abstract

RATIONAL AND OBJECTIVES

To evaluate our prototype method for segmentation and tracking of the coronary arterial tree, which is the foundation for a computer-aided detection (CADe) system to be developed to assist radiologists in detecting non-calcified plaques in coronary CT angiography (cCTA) scans.

MATERIALS AND METHODS

The heart region was first extracted by a morphological operation and an adaptive thresholding method based on expectation-maximization (EM) estimation. The vascular structures within the heart region were enhanced and segmented using a multiscale coronary response (MSCAR) method that combined 3D multiscale filtering, analysis of the eigenvalues of Hessian matrices and EM estimation segmentation. After the segmentation of vascular structures, the coronary arteries were tracked by a 3D dynamic balloon tracking (DBT) method. The DBT method started at two manually identified seed points located at the origins of the left and right coronary arteries (LCA and RCA) for extraction of the arterial trees. The coronary arterial trees of a data set containing 20 ECG-gated contrast-enhanced cCTA scans were extracted by our MSCAR-DBT method and a clinical GE Advantage workstation. Two experienced thoracic radiologists visually examined the coronary arteries on the original cCTA scans and the rendered volume of segmented vessels to count the untracked false-negative (FN) segments and false positives (FPs) for both methods.

RESULTS

For the visible coronary arterial segments in the 20 cases, the radiologists identified that 25 segments were missed by our MSCAR-DBT method, ranging from 0 to 5 FN segments in individual cases, and that 55 artery segments were missed by the GE software, ranging from 0 to 7 FN segments in individual cases. 19 and 15 FPs were identified in our and the GE coronary trees, ranging from 0 to 4 FPs for both methods in individual cases, respectively.

CONCLUSION

The preliminary study demonstrates the feasibility of our MSCAR-DBT method for segmentation and tracking coronary artery trees. The results indicated that both our method and GE software can extract coronary artery trees reasonably well and the performance of our method is superior to that of GE software in this small data set. Further studies are underway to develop methods for improvement of the segmentation and tracking accuracy.

摘要

目的和意义

评估我们用于冠状动脉树分割和跟踪的原型方法,这是开发计算机辅助检测 (CADe) 系统的基础,以协助放射科医生在冠状动脉 CT 血管造影 (cCTA) 扫描中检测非钙化斑块。

材料和方法

首先通过基于期望最大化 (EM) 估计的形态操作和自适应阈值方法提取心脏区域。使用基于 3D 多尺度滤波、Hessian 矩阵特征值分析和 EM 估计分割的多尺度冠状动脉响应 (MSCAR) 方法增强和分割心脏区域内的血管结构。在分割血管结构后,通过 3D 动态球囊跟踪 (DBT) 方法跟踪冠状动脉。DBT 方法从位于左右冠状动脉 (LCA 和 RCA) 起点的两个手动识别的种子点开始,提取动脉树。我们的 MSCAR-DBT 方法和临床 GE 优势工作站提取了包含 20 个 ECG 门控对比增强 cCTA 扫描的数据集的冠状动脉树。两名有经验的胸部放射科医生在原始 cCTA 扫描和分割血管的渲染容积上目视检查冠状动脉,以计算两种方法的未跟踪假阴性 (FN) 段和假阳性 (FP)。

结果

对于 20 例可见的冠状动脉节段,放射科医生发现我们的 MSCAR-DBT 方法漏检了 25 个节段,单个病例漏检 0 至 5 个 FN 段,GE 软件漏检了 55 个节段,单个病例漏检 0 至 7 个 FN 段。在我们的和 GE 的冠状动脉树中分别识别出 19 个和 15 个 FP,在单个病例中,两种方法的 FP 分别为 0 至 4。

结论

初步研究证明了我们的 MSCAR-DBT 方法用于分割和跟踪冠状动脉树的可行性。结果表明,我们的方法和 GE 软件都可以合理地提取冠状动脉树,并且在这个小数据集中文本的方法性能优于 GE 软件。正在进行进一步的研究以开发提高分割和跟踪准确性的方法。

相似文献

引用本文的文献

本文引用的文献

6
Extraction of line properties based on direction fields.基于方向场的直线属性提取。
IEEE Trans Med Imaging. 1996;15(1):51-8. doi: 10.1109/42.481440.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验