Suppr超能文献

活性调节基因作为神经回路可塑性的介质。

Activity-regulated genes as mediators of neural circuit plasticity.

机构信息

Department of Biology, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.

出版信息

Prog Neurobiol. 2011 Aug;94(3):223-37. doi: 10.1016/j.pneurobio.2011.05.002. Epub 2011 May 12.

Abstract

Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring.

摘要

神经元回路的改变使大脑能够适应和随着经验而变化。这种可塑性在发育过程中和整个生命周期中都表现出来,而且可以持续很长时间。有证据表明,活性调节的基因表达与发育关键期、学习和记忆期间发生的长期结构和电生理适应,以及成年人大脑感觉图谱代表的改变有关。在所有这些情况下,神经元活动引起的细胞反应整合了多个紧密协调的机制,精确地协调大脑回路中的持久、功能和结构变化。当神经元兴奋激活从突触到细胞核的细胞信号通路,引发新的基因表达程序时,就会触发依赖于经验的可塑性。活性调节基因的蛋白质产物然后通过多种细胞机制来改变神经元的功能特性。突触的增强或减弱可以重新调整现有的电路连接,而包括突触增加和消除在内的结构变化则会创建新的连接。通常也依赖于活性的转录后调节机制进一步调节活性调节基因转录本和蛋白质功能。因此,活性调节基因实施了多种形式的结构和功能可塑性,以微调大脑电路连接。

相似文献

1
Activity-regulated genes as mediators of neural circuit plasticity.活性调节基因作为神经回路可塑性的介质。
Prog Neurobiol. 2011 Aug;94(3):223-37. doi: 10.1016/j.pneurobio.2011.05.002. Epub 2011 May 12.
2
Microglia regulate synaptic development and plasticity.小胶质细胞调节突触发育和可塑性。
Dev Neurobiol. 2021 Jul;81(5):568-590. doi: 10.1002/dneu.22814. Epub 2021 Mar 8.
4
Brain plasticity mechanisms and memory: a party of four.大脑可塑性机制与记忆:四方会谈
Neuroscientist. 2007 Oct;13(5):492-505. doi: 10.1177/1073858407302725.
6
A new mechanism of synapse-specific neuronal plasticity.一种突触特异性神经元可塑性的新机制。
Neurosci Behav Physiol. 2007 Jul;37(6):559-70. doi: 10.1007/s11055-007-0053-0.

引用本文的文献

2
Neuronal enhancers fine-tune adaptive circuit plasticity.神经元增强子精细调节适应性电路可塑性。
Neuron. 2024 Sep 25;112(18):3043-3057. doi: 10.1016/j.neuron.2024.08.002. Epub 2024 Aug 28.
10
Brains, complex systems and therapeutic opportunities in epilepsy.脑、复杂系统与癫痫的治疗机会。
Seizure. 2021 Aug;90:155-159. doi: 10.1016/j.seizure.2021.02.001. Epub 2021 Feb 6.

本文引用的文献

1
Mechanisms of specificity in neuronal activity-regulated gene transcription.神经元活动调控基因转录特异性的机制。
Prog Neurobiol. 2011 Aug;94(3):259-95. doi: 10.1016/j.pneurobio.2011.05.003. Epub 2011 May 18.
7
Joining the dots: from chromatin remodeling to neuronal plasticity.连接点:从染色质重塑到神经元可塑性。
Curr Opin Neurobiol. 2010 Aug;20(4):432-40. doi: 10.1016/j.conb.2010.04.005. Epub 2010 May 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验