Suppr超能文献

CENTDIST:通过基序分布发现共相关因子。

CENTDIST: discovery of co-associated factors by motif distribution.

机构信息

School of Computing, National University of Singapore, Computing 1, 13 Computing Drive, Singapore 117417.

出版信息

Nucleic Acids Res. 2011 Jul;39(Web Server issue):W391-9. doi: 10.1093/nar/gkr387. Epub 2011 May 20.

Abstract

Transcription factors (TFs) do not function alone but work together with other TFs (called co-TFs) in a combinatorial fashion to precisely control the transcription of target genes. Mining co-TFs is thus important to understand the mechanism of transcriptional regulation. Although existing methods can identify co-TFs, their accuracy depends heavily on the chosen background model and other parameters such as the enrichment window size and the PWM score cut-off. In this study, we have developed a novel web-based co-motif scanning program called CENTDIST (http://compbio.ddns.comp.nus.edu.sg/~chipseq/centdist/). In comparison to current co-motif scanning programs, CENTDIST does not require the input of any user-specific parameters and background information. Instead, CENTDIST automatically determines the best set of parameters and ranks co-TF motifs based on their distribution around ChIP-seq peaks. We tested CENTDIST on 14 ChIP-seq data sets and found CENTDIST is more accurate than existing methods. In particular, we applied CENTDIST on an Androgen Receptor (AR) ChIP-seq data set from a prostate cancer cell line and correctly predicted all known co-TFs (eight TFs) of AR in the top 20 hits as well as discovering AP4 as a novel co-TF of AR (which was missed by existing methods). Taken together, CENTDIST, which exploits the imbalanced nature of co-TF binding, is a user-friendly, parameter-less and powerful predictive web-based program for understanding the mechanism of transcriptional co-regulation.

摘要

转录因子(TFs)并非单独发挥作用,而是与其他转录因子(称为共转录因子)以组合的方式协同作用,精确地控制靶基因的转录。因此,挖掘共转录因子对于理解转录调控的机制非常重要。尽管现有的方法可以识别共转录因子,但它们的准确性在很大程度上取决于所选的背景模型和其他参数,如富集窗口大小和 PWM 得分截止值。在本研究中,我们开发了一种名为 CENTDIST 的新型基于网络的共基序扫描程序(http://compbio.ddns.comp.nus.edu.sg/~chipseq/centdist/)。与当前的共基序扫描程序相比,CENTDIST 不需要输入任何用户特定的参数和背景信息。相反,CENTDIST 会自动确定最佳参数集,并根据它们在 ChIP-seq 峰周围的分布对共转录因子基序进行排名。我们在 14 个 ChIP-seq 数据集上测试了 CENTDIST,发现它比现有的方法更准确。特别是,我们将 CENTDIST 应用于前列腺癌细胞系的雄激素受体(AR)ChIP-seq 数据集,并在前 20 个命中中正确预测了 AR 的所有已知共转录因子(8 个 TF),并发现 AP4 是 AR 的一个新的共转录因子(这是现有方法所忽略的)。总之,CENTDIST 利用共转录因子结合的不平衡性质,是一个用户友好、无参数且强大的基于网络的预测程序,可用于理解转录共调控的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3471/3125780/c83e23827d23/gkr387f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验