Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA.
RNA. 2011 Jul;17(7):1296-306. doi: 10.1261/rna.2748211. Epub 2011 May 20.
Adenosine to inosine editing at the wobble position allows decoding of multiple codons by a single tRNA. This reaction is catalyzed by adenosine deaminases acting on tRNA (ADATs) and is essential for viability. In bacteria, the anticodon-specific enzyme is a homodimer that recognizes a single tRNA substrate (tRNA(Arg)(ACG)) and can efficiently deaminate short anticodon stem-loop mimics of this tRNA in vitro. The eukaryal enzyme is composed of two nonidentical subunits, ADAT2 and ADAT3, which upon heterodimerization, recognize seven to eight different tRNAs as substrates, depending on the organism, and require a full-length tRNA for activity. Although crystallographic data have provided clues to why the bacterial deaminase can utilize short substrates, residues that provide substrate binding and recognition with the eukaryotic enzymes are not currently known. In the present study, we have used a combination of mutagenesis, binding studies, and kinetic analysis to explore the contribution of individual residues in Trypanosoma brucei ADAT2 (TbADAT2) to tRNA recognition. We show that deletion of the last 10 amino acids at the C terminus of TbADAT2 abolishes tRNA binding. In addition, single alanine replacements of a string of positively charged amino acids (KRKRK) lead to binding defects that correlate with losses in enzyme activity. This region, which we have termed the KR-domain, provides a first glance at key residues involved in tRNA binding by eukaryotic tRNA editing deaminases.
在 wobble 位置的腺苷到次黄嘌呤编辑允许单个 tRNA 解码多个密码子。该反应由作用于 tRNA 的腺苷脱氨酶 (ADATs) 催化,对生存至关重要。在细菌中,反密码子特异性酶是一种同源二聚体,可识别单个 tRNA 底物(tRNA(Arg)(ACG)),并可在体外有效地脱氨该 tRNA 的短反密码子茎环模拟物。真核酶由两个非相同的亚基 ADAT2 和 ADAT3 组成,这两个亚基在异二聚化后,根据生物体的不同,可识别七种到八种不同的 tRNA 作为底物,并需要全长 tRNA 才能发挥活性。尽管晶体学数据提供了为什么细菌脱氨酶可以利用短底物的线索,但目前尚不知道为真核酶提供底物结合和识别的残基。在本研究中,我们结合使用诱变、结合研究和动力学分析,探索了锥虫天冬氨酸脱氨酶 2 (TbADAT2) 中单个残基对 tRNA 识别的贡献。我们发现 TbADAT2 的 C 末端最后 10 个氨基酸的缺失会导致 tRNA 结合的丧失。此外,一串带正电荷氨基酸(KRKRK)的单个丙氨酸替换会导致结合缺陷,与酶活性的丧失相关。该区域,我们称之为 KR 结构域,提供了一个了解真核 tRNA 编辑脱氨酶中涉及 tRNA 结合的关键残基的初步线索。